Efficient liver-directed gene transfer by in situ generation of retroviral vector from adenoviral templates.

In Vivo

SWAN Institute of Biomedical and Life Sciences, School of Biological Sciences, Royal Holloway, University of London, Egham, Surrey, UK.

Published: March 2010

Unlabelled: To improve liver-directed retroviral-mediated gene transfer, we injected C57/BL10 mice intravenously with three adenoviral vectors encoding retroviral vector genome and structural components: AdGagPol expressing the respective structural genes of Moloney murine leukaemia virus, Ad10A1Env expressing the 10A1 envelope protein of 10A1-MuLV, and AdLEIN, encoding the LEIN retrovirus genome, expressing green fluorescence protein (eGFP) and the neomycin resistance gene.

Materials And Methods: The extent of eGFP expression was determined after 1 and 15 weeks by fluorescence microscopy and FACS analysis. Proviral integration was determined by a novel PCR-based technique.

Results: Hepatocytes infected with all three Ad vectors generated LEIN retrovirus after one week and in situ transduction of neighbouring cells resulted in stable proviral integration associated with eGFP expression ranging from 4.3% to 20.5% in different liver cell populations 15 weeks post-infection.

Conclusion: Hybrid adeno-retroviral vectors can be efficiently used to improve the efficiency of retroviral-mediated gene transfer to the liver.

Download full-text PDF

Source

Publication Analysis

Top Keywords

gene transfer
12
retroviral vector
8
retroviral-mediated gene
8
lein retrovirus
8
egfp expression
8
proviral integration
8
efficient liver-directed
4
liver-directed gene
4
transfer situ
4
situ generation
4

Similar Publications

Human embryo implantation: The complex interplay between endometrial receptivity and the microbiome.

J Reprod Immunol

January 2025

Chengdu Fifth People's Hospital, (School of Medical and Life Sciences/Affiliated Fifth People's Hospital, Chengdu University of Traditional Chinese Medicine), Chengdu, China. Electronic address:

The endometrial and vaginal microbiota have co-evolved with the reproductive tract and play a key role in both health and disease. However, the difference between endometrial and vaginal microbiota, as well as their association with reproductive outcomes in women undergoing frozen embryo transfer, remains unclear. 120 women who underwent in vitro fertilization (IVF)/intracytoplasmic sperm injection (ICSI) and whole embryo freezing were enrolled.

View Article and Find Full Text PDF

Rhodothalassium (Rts.) salexigens is a halophilic purple nonsulfur bacterium and the sole species in the genus Rhodothalassium, which is itself the sole genus in the family Rhodothalassiaceae and sole family in the order Rhodothalassiales (class Alphaproteobacteria). The genome of this phylogenetically unique phototroph comprises 3.

View Article and Find Full Text PDF

Carbohydrate-active enzymes (CAZymes) involved in the degradation of plant cell walls and/or the assimilation of plant carbohydrates for energy uptake are widely distributed in microorganisms. In contrast, they are less frequent in animals, although there are exceptions, including examples of CAZymes acquired by horizontal gene transfer (HGT) from bacteria or fungi in several of phytophagous arthropods and plant-parasitic nematodes. Although the whitefly Bemisia tabaci is a major agricultural pest, knowledge of HGT-acquired CAZymes in this phloem-feeding insect of the Hemiptera order (subfamily Aleyrodinae) is still lacking.

View Article and Find Full Text PDF

Genetic and species rearrangements in microbial consortia impact biodegradation potential.

ISME J

January 2025

Universidad Pablo de Olavide, Centro Andaluz de Biología del Desarrollo/ Consejo Superior de Investigaciones Científicas/ Junta de Andalucía, Seville, Spain.

Genomic reorganisation between species and horizontal gene transfer have been considered the most important mechanism of biological adaptation under selective pressure. Still, the impact of mobile genes in microbial ecology is far from being completely understood. Here we present the collection and characterisation of microbial consortia enriched from environments contaminated with emerging pollutants, such as non-steroidal anti-inflammatory drugs.

View Article and Find Full Text PDF

Two pathogen-inducible UDP-glycosyltransferases, UGT73C3 and UGT73C4, catalyze the glycosylation of pinoresinol to promote plant immunity in Arabidopsis.

Plant Commun

January 2025

The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education; Shandong Key Laboratory of Precision Molecular Crop Design and Breeding; School of Life Sciences, Shandong University, Qingdao 266237, China. Electronic address:

UDP-glycosyltransferases (UGTs) constitute the largest glycosyltransferase family in the plant kingdom. They are responsible for transferring sugar moieties onto various small molecules to control many metabolic processes. However, their physiological significance in plants is largely unknown.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!