Background: Hypoxia-inducible factor-1 (HIF-1) influences myeloid cell function. In this study we examined the role of myeloid cell HIF-1alpha on wound healing in vivo using a cell-specific knockout (KO) mouse model.
Materials And Methods: HIF-1alpha KO mice and wild-type (WT) controls received 8 mm full thickness dorsal dermal wounds. Wound dimensions were measured until full closure. Tissue was obtained from 3-day-old wounds for (immuno-)histochemical analysis. Production of interleukin-1beta (IL-1beta) and nitric oxide (NO) in response to lipopolysaccharide (LPS) and/or desferrioxamine (DFX) was examined in vitro.
Results: Early wound closure occurred significantly faster in HIF-1alpha KO mice than in WT mice. Wounds of KO mice contained similar numbers of neutrophils and macrophages, but more activated keratinocytes, consistent with accelerated re-epithelialization. Interestingly, while LPS and LPS+DFX elicited a similar IL-1beta response in macrophages from the 2 mouse types, NO production was blunted in HIF-1alpha KO macrophages.
Conclusion: Absence of HIF-1alpha in myeloid cells accelerates the early phase of secondary intention wound healing in vivo. This may be associated with a deficient ability of myeloid cells to initiate an appropriate NO production response. Pharmacologic modulators of HIF-1alpha should be explored in situations with abnormal wound healing.
Download full-text PDF |
Source |
---|
Mol Divers
January 2025
State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, Guizhou, 550025, People's Republic of China.
This study focuses on the design, synthesis, and evaluation of benzimidazole derivatives for their anti-tumor activity against A549 and PC-3 cells. Initial screening using the MTT assay identified compound 5m as the most potent inhibitor of A549 cells with an IC of 7.19 μM, which was superior to the positive agents 5-Fluorouracil and Gefitinib.
View Article and Find Full Text PDFArch Dermatol Res
January 2025
Burn and Wound Repair Center, The Third Hospital of Hebei Medical University, No. 139, Ziqiang Road, Shijiazhuang, Hebei Province, 050035, China.
This study aimed to investigate the role of transforming growth factor-beta 3 (TGF-β3) secreted by adipose-derived stem cells (ADSCs) in suppressing melanin synthesis during the wound healing process, particularly in burn injuries, and to explore the underlying mechanisms involving the cAMP/PKA signaling pathway. ADSCs were isolated from C57BL/6 mice and characterized using flow cytometry and differentiation assays. A burn injury model was established in mice, followed by UVB irradiation to induce hyperpigmentation.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
State Key Laboratory of Advanced Medical Materials and Devices, Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Key Laboratory of Radiopharmacokinetics for Innovative Drugs, Tianjin Institutes of Health Science, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, P. R. China.
Radiotherapy (RT) is widely applied in tumor therapy, but inevitable side effects, especially for skin radiation injury, are still a fatal problem and life-threatening challenge for tumor patients. The main components of topical radiation protection preparations currently available on the market are antioxidants, such as SOD, which are limited by their unstable activity and short duration of action, making it difficult to achieve the effects of radiation protection and skin radiation damage treatment. Therefore, we designed a drug-free antioxidant hydrogel patch with encapsulated bioactive epidermal growth factor (EGF) for the treatment of radiation skin injury.
View Article and Find Full Text PDFOrthop Surg
January 2025
Orthopedics Department, Gongli Hospital of Shanghai Pudong New Area, Shanghai, China.
Objective: Soft tissue defects and postoperative wound healing complications related to calcaneus fractures may result in significant morbidity. The aim of this study was to investigate whether percutaneous minimally invasive screw internal fixation (PMISIF) can change this situation in the treatment of calcaneal fractures, and aimed to explore the mechanical effects of different internal fixation methods on Sanders type III calcaneal fractures through finite element analysis.
Methods: This retrospective analysis focused on 83 patients with Sanders II and III calcaneal fractures from March 2017 to March 2022.
Background/aims: Bruise is the extravasation of blood that may be mild or severe. Bone marrow mesenchymal stem cells (BM-MSCs) are one of the most promising cells used in regenerative medicine for treating many disorders. We aimed to evaluate the efficiency of BM-MSCs in treating cutaneous bruises.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!