Mechanisms underlying hypothermia-induced cardiac contractile dysfunction.

Am J Physiol Heart Circ Physiol

Dept. of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine, Rochester, Minnesota, USA.

Published: March 2010

Rewarming patients after profound hypothermia may result in acute heart failure and high mortality (50-80%). However, the underlying pathophysiological mechanisms are largely unknown. We characterized cardiac contractile function in the temperature range of 15-30 degrees C by measuring the intracellular Ca(2+) concentration ([Ca(2+)](i)) and twitch force in intact left ventricular rat papillary muscles. Muscle preparations were loaded with fura-2 AM and electrically stimulated during cooling at 15 degrees C for 1.5 h before being rewarmed to the baseline temperature of 30 degrees C. After hypothermia/rewarming, peak twitch force decreased by 30-40%, but [Ca(2+)](i) was not significantly altered. In addition, we assessed the maximal Ca(2+)-activated force (F(max)) and Ca(2+) sensitivity of force in skinned papillary muscle fibers. F(max) was decreased by approximately 30%, whereas the pCa required for 50% of F(max) was reduced by approximately 0.14. In rewarmed papillary muscle, both total cardiac troponin I (cTnI) phosphorylation and PKA-mediated cTnI phosphorylation at Ser23/24 were significantly increased compared with controls. We conclude that after hypothermia/rewarming, myocardial contractility is significantly reduced, as evidenced by reduced twitch force and F(max). The reduced myocardial contractility is attributed to decreased Ca(2+) sensitivity of force rather than [Ca(2+)](i) itself, resulting from increased cTnI phosphorylation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7938765PMC
http://dx.doi.org/10.1152/ajpheart.00805.2009DOI Listing

Publication Analysis

Top Keywords

twitch force
12
ctni phosphorylation
12
cardiac contractile
8
force fmax
8
ca2+ sensitivity
8
sensitivity force
8
papillary muscle
8
fmax reduced
8
myocardial contractility
8
force
6

Similar Publications

Previously, boost and sag effects seen in unfused tetanic contractions have been studied exclusively at constant stimulation frequency. However, intervals between successive discharges of motoneurons vary during voluntary movements. We therefore aimed to test whether the extra-efficient force production at the onset of contraction (boost) occurs during stimulation with variable intervals, and to what extent it depends on the level of interpulse interval (IPI) variability and history of stimulation.

View Article and Find Full Text PDF

The study aimed to verify the physiological and metabolic parameters associated with the time to task failure (TTF) during cycling exercise performed within the severe-intensity domain. Forty-five healthy and physically active males participated in two independent experiments. In experiment 1, after a graded exercise test, participants underwent constant work rate cycling efforts (CWR) at 115% of peak power output to assess neuromuscular function (Potentiated twitch) pre- and post-exercise.

View Article and Find Full Text PDF

Background: Duchenne muscular dystrophy (DMD) is a prevalent, fatal degenerative muscle disease with no effective treatments. Mdx mouse model of DMD exhibits impaired muscle performance, oxidative stress, and dysfunctional autophagy. Although antioxidant treatments may improve the mdx phenotype, the precise molecular mechanisms remain unclear.

View Article and Find Full Text PDF

Ultrasonographic evaluation of diaphragm fatigue in healthy humans.

Exp Physiol

January 2025

Division of Sport, Health and Exercise Sciences, College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge, UK.

Assessment of diaphragm function and fatigue typically relies on the measurement of transdiaphragmatic pressure (P). Although P serves as an index of diaphragm force output, it provides limited information regarding the ability of the muscle to shorten and generate power. We asked whether ultrasonography, combined with P, could be used to quantify changes in diaphragm function attributable to fatigue.

View Article and Find Full Text PDF

Acute hypoalgesic and neurophysiological responses to lower-limb ischaemic preconditioning.

Exp Brain Res

January 2025

Faculty of Sport, Technology and Health Sciences, St. Mary's University, Twickenham, Middlesex, UK.

The aim of this study was to assess if ischaemic preconditioning (IPC) can reduce pain perception and enhance corticospinal excitability during voluntary contractions. In a randomised, within-subject design, healthy participants took part in three experimental visits after a familiarisation session. Measures of pressure pain threshold (PPT), maximum voluntary isometric force, voluntary activation, resting twitch force, corticospinal excitability and corticospinal inhibition were performed before and ≥10 min after either, unilateral IPC on the right leg (3 × 5 min); a sham protocol (3 × 1 min); or a control (no occlusion).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!