An update on safety studies on the attenuated "RIEMSER Schweinepestoralvakzine" for vaccination of wild boar against classical swine fever.

Vet Microbiol

Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Institute of Infectology, Südufer 10, 17493 Greifswald-Insel Riems, Germany.

Published: July 2010

The RIEMSER Schweinepestoralvakzine is an attenuated vaccine for oral vaccination of wild boar against classical swine fever (CSF). The safety of this licensed bait vaccine which is based on the CSF virus (CSFV) strain "C" was investigated in eight animal species, e.g. weaner pigs (n=111), wild boar (n=11), ruminants (cattle, goats and sheep, n=11), foxes (n=5), rabbits (n=12), and mice (n=10). Animals were vaccinated either with a single vaccine dose containing at least 10(4.5) TCID(50), or with overdoses, i.e. the 10-fold dose, or they were subjected to repeated application schemes. During the entire observation period none of the animals which were given the vaccine virus showed clinical signs, with the exception of rabbits. These reacted to the vaccination with fever. Orally vaccinated pigs did not transmit vaccine virus to susceptible contact animals (sentinels). In none of the species examined neither vaccine virus nor viral RNA could be detected in blood after vaccination. In one wild boar viral RNA could be established in the tonsil 21 days post-vaccination (dpv); all other organ samples tested virologically negative. Up to 77.5% of the pigs and wild boar developed virus neutralising antibodies (VNA) already 14 dpv. The mean VNA titres observed in the vaccination groups seemed to depend rather on individual factors than on the administered virus dose (virus titre per dose) or the vaccination scheme. These results are comparable with findings obtained during oral vaccination campaigns in wild boar and after parenteral vaccination with this C-strain virus. From the results presented here it can be concluded that RIEMSER Schweinepestoralvakzine is safe for target and non-target species.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.vetmic.2009.11.020DOI Listing

Publication Analysis

Top Keywords

wild boar
24
vaccination wild
12
vaccine virus
12
vaccination
8
boar classical
8
classical swine
8
swine fever
8
riemser schweinepestoralvakzine
8
oral vaccination
8
virus
8

Similar Publications

The Effect of Clostridium butyricum-Derived Lipoteichoic Acid on Lipopolysaccharide-Stimulated Porcine Intestinal Epithelial Cells.

Vet Med Sci

January 2025

State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China.

Background: Clostridium butyricum is a probiotic widely used in animal husbandry, and there is evidence to suggest that it can alleviate intestinal inflammation in pigs and may be related to its lipoteichoic acid (LTA), but the mechanism is still unclear.

Objective: This study aimed to determine the regulatory effect and potential mechanism of C. butyricum LTA on LPS-stimulated inflammation in intestinal porcine epithelial line-J2 (IPEC-J2).

View Article and Find Full Text PDF

African swine fever (ASF) is a highly virulent disease rapidly spreading through Europe with fatal consequences for wild boar and domestic pigs. Understanding pathogen transmission among individuals and populations is crucial for disease control. However, the carcass attractiveness for boars was surprisingly almost unstudied.

View Article and Find Full Text PDF

The European pond turtle (Emys orbicularis) is a wide-ranging, long-living freshwater species with low reproductive success, mainly due to high predation pressure. We studied how habitat variables and predator communities in near-natural marshes affect the survival of turtle eggs and hatchlings. We followed the survival of artificial turtle nests placed in marshes along Lake Balaton (Hungary) in May and June as well as hatchlings (dummies) exposed in September.

View Article and Find Full Text PDF

Hemoglobin-derived amyloid fibrils: Fibrillization mechanisms and potential applications.

Food Chem

December 2024

State Key Laboratory of Meat Quality Control and Cultured Meat Development, MOST; Key Laboratory of Meat Processing, MARA; Jiangsu Innovative Center of Meat Production, Processing and Quality Control; College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China.. Electronic address:

Fibrils from food proteins were widely reported but it has not been reported on sus scrofa hemoglobin. Utilizing fibrillization strategies can efficiently utilize hemoglobin and reduce waste. This work explores a new strategy to prepare hemoglobin-derived fibrils by removing the heme group.

View Article and Find Full Text PDF

Background: The aim of this study was to investigate the survival of and in decaying wild boar tissue and assess their freezing tolerance in experimentally infected animals.

Methods: The present study was conducted in Buenos Aires City, Argentina during the 2018-2019 period. Two wild boars were used, one infected with 20,000 muscle larvae (ML) of and the other with .

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!