Bloch simulations with intra-voxel spin dephasing.

J Magn Reson

Institute for Biodiagnostics, National Research Council of Canada, 435 Ellice Avenue, Winnipeg, Manitoba, Canada.

Published: March 2010

A common problem in simulations of MRI-experiments based on the numerical solution of the Bloch equations is the finite number of isochromats used in the calculations. This usually results in false or spurious signals and is a source of various differences between calculated and experimentally obtained data. In this paper, we are proposing a technique representing each sample voxel by a central and three additional isochromats, slightly shifted in orthogonal directions from center, thus providing a linear approximation of intra-voxel dephasing. This approach allows for further improvement and precision of the calculated NMR signal and virtually avoids the problem related to an finite set of isochromats. Here we provide details of the algorithm together with examples of simulations which prove the efficiency of this approach.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jmr.2009.11.019DOI Listing

Publication Analysis

Top Keywords

bloch simulations
4
simulations intra-voxel
4
intra-voxel spin
4
spin dephasing
4
dephasing common
4
common problem
4
problem simulations
4
simulations mri-experiments
4
mri-experiments based
4
based numerical
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!