Generating CO(2)-credits through landfill in situ aeration.

Waste Manag

Institute of Environmental Technology and Energy Economics, Hamburg University of Technology, Harburger Schlossstr. 36, D-21079 Hamburg, Germany.

Published: April 2010

AI Article Synopsis

  • Landfills are a significant source of methane emissions globally, but gas extraction systems have reduced these emissions in Europe and the US over recent decades.
  • Residual methane continues to be emitted after energy recovery efforts decline, but in situ aeration can effectively mitigate these emissions during and after the aeration process.
  • A case study in northern Germany shows that up to 95% of greenhouse gas emissions can be avoided through controlled landfill aeration, and the UNFCCC has recognized this approach for potentially generating Certified Emission Reductions (CERs).

Article Abstract

Landfills are some of the major anthropogenic sources of methane emissions worldwide. The installation and operation of gas extraction systems for many landfills in Europe and the US, often including technical installations for energy recovery, significantly reduced these emissions during the last decades. Residual landfill gas, however, is still continuously produced after the energy recovery became economically unattractive, thus resulting in ongoing methane emissions for many years. By landfill in situ aeration these methane emissions can be widely avoided both, during the aeration process as well as in the subsequent aftercare period. Based on model calculations and online monitoring data the amount of avoided CO(2-eq). can be determined. For an in situ aerated landfill in northern Germany, acting as a case study, 83-95% (depending on the kind and quality of top cover) of the greenhouse gas emission potential could be reduced under strictly controlled conditions. Recently the United Nations Framework Convention on Climate Change (UNFCCC) has approved a new methodology on the "Avoidance of landfill gas emissions by in situ aeration of landfills" (UNFCCC, 2009). Based on this methodology landfill aeration projects might be considered for generation of Certified Emission Reductions (CERs) in the course of CDM projects. This paper contributes towards an evaluation of the potential of landfill aeration for methane emissions reduction.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.wasman.2009.11.014DOI Listing

Publication Analysis

Top Keywords

methane emissions
16
situ aeration
12
landfill situ
8
energy recovery
8
landfill gas
8
aeration methane
8
landfill aeration
8
landfill
7
aeration
6
emissions
6

Similar Publications

Waste has emerged as a pressing concern for the environment, primarily stemming from the processes of urbanization and industrialization. The substantial volumes of waste generated pose a serious threat to the environment, as they spread out harmful substances in the soil and release methane emissions into the atmosphere. To effectively address this issue, this study explores the impact of municipal and industrial waste, as well as waste-related innovation on the load capacity factor (LCF) from 2005 to 2020.

View Article and Find Full Text PDF

Optimizing Point-in-Space Continuous Monitoring System Sensor Placement on Oil and Gas Sites.

ACS Sustain Resour Manag

January 2025

Department of Applied Mathematics and Statistics, Colorado School of Mines, Golden, Colorado 80401, United States.

We propose a generic, modular framework to optimize the placement of point-in-space continuous monitoring system sensors on oil and gas sites aiming to maximize the methane emission detection efficiency. Our proposed framework substantially expands the problem scale compared to previous related studies and can be adapted for different objectives in sensor placement. This optimization framework is comprised of five steps: (1) simulate emission scenarios using site-specific wind and emission information; (2) set possible sensor locations under consideration of the site layout and any site-specific constraints; (3) simulate methane concentrations for each pair of emission scenario and possible sensor location; (4) determine emissions detection based on the site-specific simulated concentrations; and (5) select the best subset of sensor locations, under a given number of sensors to place, using genetic algorithms combined with Pareto optimization.

View Article and Find Full Text PDF

Although 3-nitrooxypropanol (3-NOP; Bovaer10) has been proven to reduce enteric methane (CH) by ∼30% in indoor systems of dairying when the additive is mixed throughout TMR and partial mixed ration (PMR) diets, there has been limited research to date on the CH abatement potential of 3-NOP when mixed within a diet based on perennial ryegrass silage only and fed to pregnant nonlactating dairy cows. To investigate the effect of 3-NOP supplementation on enteric CH emissions of pregnant nonlactating dairy cows, a 6-wk study was undertaken in which treatment cows were supplemented with 3-NOP mixed within grass silage, whereas control cows were offered grass silage without additive supplementation. Enteric CH, hydrogen (H), and carbon dioxide (CO) were measured using a GreenFeed machine.

View Article and Find Full Text PDF

Revising the coal mining CH emission factor based on multiple inventories and atmospheric inversion approach at one of the world's largest coal production areas: Shanxi province, China.

Sci Total Environ

January 2025

College of Ecology and Environment, Joint Center for sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China; Yale-NUIST Center on Atmospheric Environment, Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters (CIC-FEMD), Nanjing University of Information Science & Technology, Nanjing 210044, China. Electronic address:

Methane (CH) emissions from the coal industry represent a substantial portion of anthropogenic CH emissions from energy-related activities. China ranks as the world's largest coal producer, where Shanxi Province is one of its major coal production regions and accounts for 20.7 % of the national total coal production.

View Article and Find Full Text PDF

Nowadays, benzimidazole and its derivatives are widely assembled into multifunctional materials with various properties such as mechanochromism, photochromism, thermochromism and electrochromism. Herein, two novel zinc(II) coordination compounds, [Zn(L)Br]·2HO (1) and [Zn(L)Cl]·2HO (2) (L = tetra(1-benzo[]imidazol-2-yl)ethene), have been constructed one-pot facile synthesis from bis(1-benzo[]imidazol-2-yl)methane (L) and zinc(II) salts. The ligand L with a CC double bond was formed by C-C coupling of two sp-C atoms of L in solvothermal synthesis, which provides a new strategy to generate the conjugation system conveniently.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!