Dynamical systems modeling was used to analyze fluctuations in the pain prediction process of people with rheumatoid arthritis. 170 people diagnosed with rheumatoid arthritis completed 29 consecutive days of diaries. Difference scores between pain predictions and next-day pain experience ratings provided a time series of pain prediction accuracy. Pain prediction accuracy oscillated over time. The oscillation amplitude was larger at the start of the diary than at the end, which indicates damping toward more accurate predictions. State-level psychological characteristics moderated the damping pattern such that the oscillations for patients with lower negative affect and higher pain control damped more quickly than the oscillations for their counterparts. Those findings suggest that low negative affect and high pain control generally contributed to a more accurate pain prediction process in the chronically ill. Positive affect did not differentiate the damping pattern but, within each oscillation cycle, patients with higher positive affect spent more time making inaccurate predictions than their counterparts. The current analyses highlight the need to account for change in data through dynamical modeling, which cannot be fully observed through traditional statistical techniques.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3212835PMC

Publication Analysis

Top Keywords

pain prediction
20
prediction accuracy
12
pain
9
prediction process
8
rheumatoid arthritis
8
damping pattern
8
negative affect
8
pain control
8
positive affect
8
prediction
5

Similar Publications

Background: The Predicting Risk of CVD Events (PREVENT) equations were developed to address limitations of the Pooled Cohort Equations (PCEs) in predicting atherosclerotic cardiovascular disease (ASCVD) risk. The comparative effectiveness of the PREVENT equations versus the PCEs in predicting mortality risk remains unknown.

Objectives: The purpose of this study was to compare the risk discrimination value of the PREVENT equations with the PCEs for predicting mortality.

View Article and Find Full Text PDF

Background: Previous research has demonstrated that placebo induction manipulations can reduce an individual's pain through non-specific mechanisms, such as expectancy manipulations. However, despite robust research characterizing these effects, individual differences in predicting placebo analgesic responses are not well understood.

Methods: Fifty-four healthy pain-free adults over 18 (M=22.

View Article and Find Full Text PDF

Background: Artcure diffusional patch (ADP) is a novel transdermal therapeutic system that started to be used in the last decade for lumbar disc herniation (LDH). Previous studies have reported early results of the therapy. In this study, we aimed to evaluate the medium- to long-term functional outcomes of this treatment in LDH patients and examine factors predicting the need for surgery after treatment.

View Article and Find Full Text PDF

Background: Ultrasonographic optic nerve sheath diameter (ONSD) is a satisfactory noninvasive intracranial pressure (ICP) monitoring test. Our aim was to evaluate ONSD as an objective screening tool to predict and diagnose ICP changes early in sepsis-associated encephalopathy (SAE).

Methods: Our prospective observational study was conducted on patients with sepsis, and after intensive care unit (ICU) admission, the time to diagnose SAE was recorded, and patients were divided into a non-SAE group including conscious patients with sepsis and a SAE group including patients with sepsis with acute onset of disturbed conscious level.

View Article and Find Full Text PDF

In a genome-wide association study (GWAS) meta-analysis of 688,808 individuals with major depression (MD) and 4,364,225 controls from 29 countries across diverse and admixed ancestries, we identify 697 associations at 635 loci, 293 of which are novel. Using fine-mapping and functional tools, we find 308 high-confidence gene associations and enrichment of postsynaptic density and receptor clustering. A neural cell-type enrichment analysis utilizing single-cell data implicates excitatory, inhibitory, and medium spiny neurons and the involvement of amygdala neurons in both mouse and human single-cell analyses.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!