ABSTRACT In this research work we developed in vitro tests utilizing mammalian cell cultures, which can rapidly assess effect of exposure of oily sludge-derived chemicals on human and ecological health. Many of these are hazardous to health and environment due to their toxicity and/or accumulation potential in sediments as well as in organisms. Petroleum refinery and petrochemical industry-derived oily sludges contain toxic polycyclic aromatic hydrocarbons (PAHs), some of which are lipophilic in nature. Risk assessment of environmental samples suffers from inadequate availability of toxicity data, lack of knowledge about behavior of genotoxic substances in complex matrices, paucity of information on synergistic and antagonistic interactions of mixture of components, etc.; the literature describing the behavior of genotoxic substances in complex mixtures is sparse and sometimes contradictory. The present study aims at assessing the genotoxic potential of oily sludges collected from an integrated petroleum refinery and petrochemical industry located in the southwestern part of India and a petrochemical industry located in the western part of India using a battery of genotoxicity assays such as DNA damage/strand break, chromosomal aberration, p(53) protein induction, and apoptosis in CHO-K1 cell culture system. Exposure with different dose levels of sludge extracts (25, 50, 100 muL) in CHO-K1 cells could cause statistically significant level of (P < 0.001) DNA damage, chromosomal aberration, p(53) protein induction, and apoptosis in comparison to negative control treatment groups, and the genotoxicity was attributed to PAHs present in the sludge as identified by GC-MS. This implies that the sludges are genotoxic in nature in mammalian cells tested, and the exposure to these may pose a potential genotoxic risk to human beings.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/15376510600943676 | DOI Listing |
Chem Sci
January 2025
Institute of Chemistry, Academia Sinica 128 Academia Road, Section 2, Nankang Taipei 115201 Taiwan
Nanographenes and polycyclic aromatic hydrocarbons exhibit many intriguing physical properties and have potential applications across a range of scientific fields, including electronics, catalysis, and biomedicine. To accelerate the development of such applications, efficient and reliable methods for accessing functionalized analogs are required. Herein, we report the efficient synthesis of functionalized small nanographenes from readily available iodobiaryl and diarylacetylene derivatives a one-pot, multi-annulation sequence catalyzed by a single palladium catalyst.
View Article and Find Full Text PDFSe Pu
February 2025
School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China.
Solid-phase microextraction (SPME) is a fast and simple sample preparation technique that enables the enrichment of analytes, and it is used in combination with other detection techniques to provide accurate and sensitive analytical methods. SPME is widely used in environmental monitoring, food safety, life analysis, biomedicine, and other applications. The extractive coating is the core of the SPME technique, and the properties of the extractive coating greatly influence extraction selectivity and efficiency, as well as the enrichment effect.
View Article and Find Full Text PDFEnviron Toxicol Chem
January 2025
Department of Environmental Engineering, Faculty of Engineering, Bursa Uludag University, 16059 Nilüfer/Bursa-Türkiye.
This study evaluates atmospheric polycyclic aromatic hydrocarbon (PAH) concentrations in a semi-urban area, Görükle, Turkey, from June 2021 to February 2022. The average concentration of ∑16 PAHs was 24.85 ± 19.
View Article and Find Full Text PDFEnviron Sci Technol
January 2025
Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), Dalian Key Laboratory on Chemicals Risk Control and Pollution Prevention Technology, School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China.
Chemicals in plastics raise significant concerns for potential adverse environmental and health impacts. However, dissipation kinetics and fluxes of chemicals from outdoor plastic products remain largely uncharacterized, hindering the accurate assessment of their environmental exposure. This study quantified outdoor dissipation profiles for 20 "priority" chemicals, including sunscreens (benzophenone, benzophenone-3, octyl salicylate, etc.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
January 2025
Marine and Freshwater Solutions, Finnish Environment Institute, Latokartanonkaari 11, 00790, Helsinki, Finland.
Car tyres are considered to release a substantial amount of particles to the environment. Due to the high emission volumes and the chemical risks associated with tyre rubber, there is an urgent need to quantify their ecotoxicological effects. The effects of exposure to particles derived from end-of-life tyres were investigated on the Baltic clam (Macoma balthica), which is one of the key invertebrate species living in the soft-bottom sediments of the northern Baltic Sea.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!