ABSTRACT Viral and nonviral vectors have been widely used in gene therapy as delivery reagents for nucleic acids. Toxicity with viral vectors has increasingly led to the search for suitable nonviral vectors, such as cationic lipids/polymers, as potentially safer alternatives. However, little is known about the genomic toxicity of these delivery systems in target cells/tissues. In the current investigation, we report on the toxicogenomics and genotoxicity of cationic lipid Oligofectamine (OF) nanosystems in human alveolar epithelial A549 cells. To investigate the nature and the ontology of the gene expression changes in A549 cells upon treatment with OF nanoliposomes, microarray gene expression profiling methodology was utilized. For microarray analysis, cyanine (Cy3/Cy5)-labeled cDNA samples from treated and untreated cells were hybridized on target arrays housing 200 genes. Both OF and OF-DNA lipoplex induced significant gene expression changes belonging to the different genomic ontologies such as cell defense and apoptosis pathways. Flow cytometry analyses revealed induction of apoptosis in A549 cells treated with these nanosystems that is likely due to interactions and/or deterioration of the cell membranes. However, no DNA damage was detected by the Comet assay. These data suggest that cationic nanoliposomes in the absence of direct DNA damage elicit multiple gene expression changes in A549 cells that may compromise the main goals of gene medicine where only therapy-defined gene changes are required.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/15376510801891286 | DOI Listing |
Discov Oncol
January 2025
School of Medicine, Anhui University of Science & Technology, Huainan, China.
Background: Lung adenocarcinoma is one of the most common malignant tumors worldwide. Its complex molecular mechanisms and high tumor heterogeneity pose significant challenges for clinical treatment. The manganese ion metabolism family plays a crucial role in various biological processes, and the abnormal expression of the NUDT3 gene in multiple cancers has drawn considerable attention.
View Article and Find Full Text PDFNaunyn Schmiedebergs Arch Pharmacol
January 2025
General Hospital of Ningxia Medical University, Yinchuan, 750001, Ningxia, P. R. China.
Monotropein (Mon) is an iridoid glycosides extracted from Morinda officinalis F.C. How.
View Article and Find Full Text PDFMol Ther Oncol
March 2025
Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain.
Oncolytic adenoviral therapy is a promising approach for pancreatic cancer treatment. However, the limited capacity of murine cells to produce infectious viral progeny precludes the full evaluation of the virotherapy in a suitable immunocompetent mouse model. Here, we report that the murine KPC-I cell line, established from pancreatic tumors developed in ; ; mice, is susceptible to adenoviral replication and generates a progeny of infective virions similar to those from infected human A549 cells.
View Article and Find Full Text PDFRSC Adv
January 2025
Institute of Chemistry, Vietnam Academy of Science and Technology (VAST) 18 Hoang Quoc Viet, Cau Giay Hanoi Vietnam
Podophyllotoxin, along with its numerous derivatives and related compounds, is well known for its broad-spectrum pharmacological activity, especially for anticancer potential. In this study, several isatin-podophyllotoxin hybrid compounds were successfully synthesized with good yields through microwave-prompted three-component reactions of 2-amino-1,4-naphthoquinone, various substituted isatins, and tetronic acid. Their cytotoxicity was assessed against four types of human cancer cell lines, HepG2 (hepatoma carcinoma), MCF7 (breast cancer), A549 (non-small lung cancer), and KB (epidermoid carcinoma), alongside nontumorigenic HEK-293 human embryonic kidney cells.
View Article and Find Full Text PDFFront Cell Infect Microbiol
January 2025
Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland.
is a prevalent fungal pathogen responsible for infections in humans. As described recently, nanometer-sized extracellular vesicles (EVs) produced by play a crucial role in the pathogenesis of infection by facilitating host inflammatory responses and intercellular communication. This study investigates the functional properties of EVs released by biofilms formed by two strains-3147 (ATCC 10231) and SC5314-in eliciting host responses.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!