Rapid in vitro screening of drug-metal ion interactions.

Toxicol Mech Methods

Department of Applied Chemistry, Cochin University of Science and Technology, Kochi, Kerala, 682022, India.

Published: October 2012

ABSTRACT The toxic side effects of synthetic drugs may, in part, be arising due to their interactions with essential metal ions, especially when the metal ions are administered along with the drug as mineral supplements. In this paper we report the feasibility of establishing such drug-metal ion interactions through in vitro spectrophotometric studies, which are rapid and can be used for routine screening prior to clinical studies. The interaction of the drugs levothyroxine and ranitidine with eight metal ions, copper(II), chromium(III), molybdenum(VI), magnesium(II), calcium(II), iron(II), manganese(II), and zinc(II), commonly used in mineral supplements, was verified through in vitro UV-visible spectrophotometric studies. The experiments were carried out at the physiological pH values 1.5, 7.4, and 8.0 and the concentrations of the drugs and mineral supplements used were comparable to those in their usual doses. These studies indicated interaction between ranitidine and calcium(II), magnesium(II), and iron(II) ions and between levothyroxine and copper(II) and iron(II) ions. A comparison of the results with those reported from clinical studies demonstrated the efficacy of this method.

Download full-text PDF

Source
http://dx.doi.org/10.1080/15376510701380653DOI Listing

Publication Analysis

Top Keywords

metal ions
12
mineral supplements
12
drug-metal ion
8
ion interactions
8
spectrophotometric studies
8
clinical studies
8
ironii ions
8
ions
5
studies
5
rapid vitro
4

Similar Publications

A new [DyBiOCl(saph)] () Werner-type cluster has been prepared, which is the first Dy/Bi polynuclear compound with no metal-metal bond and one of the very few Ln-Bi (Ln = lanthanide) heterometallic complexes reported to date. The molecular compound has been deliberately transformed to its 1-D analogue [DyBiO(N)(saph)] () via the replacement of the terminal Cl ions by end-to-end bridging N groups. The overall metallic skeleton of (and ) can be described as consisting of a diamagnetic {Bi} unit with an elongated trigonal bipyramidal topology, surrounded by a magnetic {Dy} equilateral triangle, which does not contain μ-oxo/hydroxo/alkoxo groups.

View Article and Find Full Text PDF

Merging SOMO activation with transition metal catalysis: Deoxygenative functionalization of amides to β-aryl amines.

Sci Adv

January 2025

State Key Laboratory of Organometallic Chemistry and Shanghai Hongkong Joint Laboratory in Chemical Synthesis, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032 (China).

Singly occupied molecular orbital (SOMO) activation of in situ generated enamines has achieved great success in (asymmetric) α-functionalization of carbonyl compounds. However, examples on the use of this activation mode in the transformations of other functional groups are rare, and the combination of SOMO activation with transition metal catalysis is still less explored. In the area of deoxygenative functionalization of amides, intermediates such as iminium ions and enamines were often generated in situ to result in the formation of α-functionalized amines.

View Article and Find Full Text PDF

We present the synthesis, structural analysis, and remarkable reactivity of the first carbon nanohoop that fully incorporates ferrocene in the macrocyclic backbone. The high strain imposed on the ferrocene by the curved nanohoop structure enables unprecedented photochemical reactivity of this otherwise photochemically inert metallocene complex. Visible light activation triggers a ring-opening of the nanohoop structure, fully dissociating the Fe-cyclopentadienyl bonds in the presence of 1,10-phenanthroline.

View Article and Find Full Text PDF

Homo-Mannich Reaction of Cyclopropanols: A Versatile Tool for Natural Product Synthesis.

Acc Chem Res

January 2025

Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China.

ConspectusThe Mannich reaction, involving the nucleophilic addition of an enol(ate) intermediate to an imine or iminium ion, is one of the most widely used synthetic methods for the synthesis of β-amino carbonyl compounds. Nevertheless, the homo-Mannich reaction, which utilizes a homoenolate intermediate as the nucleophilic partner and provides straightforward access to the valuable γ-amino carbonyl compounds, remains underexplored. This can be largely attributed to the difficulties in generation and manipulation of the homoenolate species, despite various homoenolate equivalents that have been developed.

View Article and Find Full Text PDF

The local structure plays a crucial role in oxygen redox reactions, which boosts the capacity of layered oxide cathodes for sodium-ion batteries. While studies on local structural ordering have primarily focused on the intra-layer ordering, there has been limited research on the inter-layer stacking for the layered cathode materials for sodium-ion batteries. In this work, the impact of the intra-layer and inter-layer local structural regulation on anionic kinetics and the structure stability are explored through experimental analysis and theoretical calculations.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!