A new strategy for the radiolabeling of porous nanocontainers has been developed, and the first experiments in vivo are reported. Our approach consists of the use of nanometer-sized zeolites whose channels have been filled with the positively charged gamma-emitter (111)In(3+) via simple ion exchange. To avoid leaching of the isotope under physiological conditions, the entrances of the channels have been closed using a specifically designed molecular stopcock. This stopcock has a positively charged group that enters the channels and entraps the loaded radionuclides via electrostatic and steric repulsion. The other side of the stopcock is a bulky triethoxysilane group that can covalently bind to the walls of the zeolite entrances, thereby irreversibly closing the channels. The surface of the zeolites has been functionalized with different chemical groups in order to investigate the different biodistributions depending of the nature of the functionalizations. Preliminary in vivo experiments with Wistar rats have been performed and showed the potential of the approach. This strategy leads to a nanoimaging probe with a very high density of radioisotopes in a confined space, which is highly stable in physiological solution and could allow a large variety of functionalities on its external surface.

Download full-text PDF

Source
http://dx.doi.org/10.1021/nn901166uDOI Listing

Publication Analysis

Top Keywords

positively charged
8
encapsulating 111in
4
111in nanocontainers
4
nanocontainers scintigraphic
4
scintigraphic imaging
4
imaging synthesis
4
synthesis characterization
4
characterization vivo
4
vivo biodistribution
4
biodistribution strategy
4

Similar Publications

NIPAm Microgels Synthesised in Water: Tailored Control of Particles' Size and Thermoresponsive Properties.

Polymers (Basel)

December 2024

School of Physical & Chemical Sciences, Queen Mary University of London, Joseph Priestley Building, Mile End Road, London E1 4NS, UK.

Microgels, combining the properties of hydrogels and microparticles, are emerging as versatile materials for varied applications such as drug delivery and sensing, although the precise control of particle size remains a challenge. Advances in synthetic methodologies have provided new tools for tailoring of properties, however costs and scalability of the processes remains a limitation. We report here the water-based synthesis of a library of -isopropylacrylamide-based microgels covalently crosslinked with varying contents of ,-methylenebisacrylamide.

View Article and Find Full Text PDF

Application of LC-MS/MS for the Identification of Drugs of Abuse in Driver's License Regranting Procedures.

Pharmaceuticals (Basel)

December 2024

Laboratory of Forensic Toxicology, Section of Legal Medicine, Social Security and Forensic Toxicology, Department of Biomedicine and Prevention, Faculty of Medicine and Surgery, University of Rome "Tor Vergata", Via Montpellier 1, 00133 Rome, Italy.

Drugged driving is associated with an increased risk of road accidents worldwide. In Italy, driving under the influence (DUI) of alcohol and drugs is a reason for driving disqualification or revocation of the driving license. Drivers charged with driving under the influence of alcohol and drugs must attend a Local Medical Commission (LMC) to undergo mandatory examinations to regain the suspended license.

View Article and Find Full Text PDF

Light Absorption-Enhanced Ultra-Thin Perovskite Solar Cell Based on Cylindrical MAPbI Microstructure.

Materials (Basel)

December 2024

School of Physics and Electronic-Information Engineering, Hubei Engineering University, Xiaogan 432000, China.

In order to promote power conversion efficiency and reduce energy loss, we propose a perovskite solar cell based on cylindrical MAPbI3 microstructure composed of a MAPbI perovskite layer and a hole transport layer (HTL) composed of PEDOT:PSS. According to the charge transport theory, which effectually increases the contact area of the HTL, promoting the electronic transmission capability, the local field enhancement and scattering effects of the surface plasmon polaritons help to couple the incident light to the solar cell, which can increase the absorption of light in the active layer of the solar cell and improve its light absorption efficiency (LAE). based on simulation results, a cylindrical microstructure of the perovskite layer increases the contact area of the hole transport layer, which could improve light absorption, quantum efficiency (QE), short-circuit current density (J), and electric power compared with the perovskite layer of other structures.

View Article and Find Full Text PDF

A Potent Antibacterial Peptide (P6) from the De Novo Transcriptome of the Microalga .

Int J Mol Sci

December 2024

Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture (CAS), Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266000, China.

Marine microalgae are a rich source of natural products, and their amino acid-based antimicrobial agents are usually obtained by enzymatic hydrolysis, which is inefficient and limits the research on antimicrobial peptides (AMPs) from microalgae. In this study, is used as a model to predict antimicrobial peptides through high-throughput methods, and 471 putative peptides are identified based on the de novo transcriptome technique. Among them, three short peptides, P1, P6, and P7 were found to have antimicrobial activity against , , , and yeast , and they showed no hemolytic activity even at higher concentrations up to 10 mg/mL.

View Article and Find Full Text PDF

Triboelectric separation, a solvent-free method, was investigated as a tool for protein enrichment in wheat flour. Gluten-starch model mixtures, flour, and reground flour fractions were evaluated for their separation characteristics (selectivity and efficiency). Mass yield, protein content, particle size distribution, and SEM analysis were used to assess performance.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!