Ln(4)FeGa(12), where Ln is Y, Tb, Dy, Ho, and Er, prepared by flux growth, crystallize with the cubic Y(4)PdGa(12) structure with the Im3m space group and with a = 8.5650(4), 8.5610(4), 8.5350(3), 8.5080(3), and 8.4760(3) A, respectively. The crystal structure consists of an iron-gallium octahedra and face-sharing rare-earth cuboctahedra of the Au(3)Cu type. Er(4)Fe(0.67)Ga(12) is iron-deficient, leading to a distortion of the octahedral and cuboctahedral environments due to the splitting of the Ga2 site into Ga2 and Ga3 sites. Further, interstitial octahedral sites that are unoccupied in Ln(4)FeGa(12) (Ln = Y, Tb, Dy, and Ho) are partially occupied by Fe2. Y(4)FeGa(12) exhibits weak itinerant ferromagnetism below 36 K. In contrast, Tb(4)FeGa(12), Dy(4)FeGa(12), Ho(4)FeGa(12), and Er(4)Fe(0.67)Ga(12) order antiferromagnetically with maxima in the molar magnetic susceptibilities at 26, 18.5, 9, and 6 K. All of the compounds exhibit metallic electric resistivity, and their iron-57 Mossbauer spectra, obtained between 4.2 and 295 K, exhibit a single-line absorption with a 4.2 K isomer shift of ca. 0.50 mm/s, a shift that is characteristic of iron in an iron-gallium intermetallic compound. A small but significant broadening in the spectral absorption line width is observed for Y(4)FeGa(12) below 40 K and results from the small hyperfine field arising from its spin-polarized itinerant electrons.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/ic9013202 | DOI Listing |
Small
January 2025
Key Laboratory of Eco-chemical Engineering, International S&T Cooperation Foundation of Eco-chemical Engineering and Green Manufacture, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China.
Crafting anisotropically epitaxial p-n heterostructures with Z-scheme charge transmission is a promising avenue toward excellent photocatalytic efficiency, yet the large lattice mismatch and diverse crystal growth habits between components have often arisen as a big challenge to this goal. Here, anisotropically epitaxial p-n heterostructures with 19.8% lattice mismatch are obtained via a dynamics-mediated seeded growth tactic under reaction temperature as low as 60 °C.
View Article and Find Full Text PDFNano Converg
January 2025
Department of Physics, Yonsei University, Seoul, 03722, Republic of Korea.
Two-dimensional halide perovskites are attracting attention due to their structural diversity, improved stability, and enhanced quantum efficiency compared to their three-dimensional counterparts. In particular, Dion-Jacobson (DJ) phase perovskites exhibit superior structural stability compared to Ruddlesden-Popper phase perovskites. The inherent quantum well structure of layered perovskites leads to highly anisotropic charge transport and optical properties.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
State Key Laboratory of Chemical Engineering, Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China. Electronic address:
Branched poly (butylene succinate-co-butylene terephthalate) (BPBST) was synthesized by in-situ polycondensation to enhance the foamability of poly (butylene succinate-co-butylene terephthalate) (PBST) and was blended with cellulose nanocrystals (CNC) to address foam shrinkage. The introduction of 2 wt% CNC increased the crystallization temperature of BPBST from 66.6 °C to 87.
View Article and Find Full Text PDFNano Lett
January 2025
Department of Physics, Centre for Materials Science and Nanotechnology, University of Oslo, PO Box 1048 Blindern, N-0316 Oslo, Norway.
Polymorphism determines significant variations in materials' properties by lattice symmetry variation. If they are stacked together into multilayers, polymorphs may work as an alternative approach to the sequential deposition of layers with different chemical compositions. However, selective polymorph crystallization during conventional thin film synthesis is not trivial; changes of temperature or pressure when switching from one polymorph to another during synthesis may cause degradation of the structural quality.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
University of Fribourg: Universite de Fribourg, Department of Chemistry, Chemin du Musée 9, 1700, Fribourg, SWITZERLAND.
The recovery and separation of organic solvents is highly important for the chemical industry and environmental protection. In this context, porous organic polymers (POPs) have significant potential owing to the possibility of integrating shape-persistent macrocyclic units with high guest selectivity. Here, we report the synthesis of a macrocyclic porous organic polymer (np-POP) and the corresponding model compound by reacting cyclotetrabenzil naphthalene octaketone macrocycle with 1,2,4,5-tetraaminobenzene and 1,2-diaminobenzene, respectively, under solvothermal conditions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!