A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Design and testing of biological scaffolds for delivering reparative cells to target sites in the lung. | LitMetric

This study summarizes the development and testing of a scaffold to promote engraftment of cells in the distal lung. A fibrinogen-fibronectin-vitronectin hydrogel (FFVH) was developed and optimized with respect to its mechanical and biological properties for this application. In vitro, FFVH scaffolds promoted attachment, histiotypic growth and expression of basement membrane proteins by primary ovine lung mesenchymal cells derived from lung biopsies. In vivo testing was then performed to assess the ability of FFVHs to promote cell engraftment in the sheep lung. Treatment with autologous cells delivered using FFVH was clinically well tolerated. Cells labelled with a fluorescent dye (PKH-26) were detected at treatment sites after 1 month. Tissue mass (assessed by CT imaging) and lung perfusion (assessed by nuclear scintigraphy) were increased at emphysema test sites. Post-treatment histology demonstrated cell proliferation and increased elastin expression without scarring or collapse. No treatment-related pathology was observed at healthy control sites. FFVH scaffolds promote cell attachment, spreading and extracellular matrix expression in vitro and apparent engraftment in vivo, with evidence of trophic effects on the surrounding tissue. Scaffolds of this type may contribute to the development of cell-based therapies for patients with end-stage pulmonary diseases.

Download full-text PDF

Source
http://dx.doi.org/10.1002/term.237DOI Listing

Publication Analysis

Top Keywords

ffvh scaffolds
8
promote cell
8
lung
6
cells
5
design testing
4
testing biological
4
scaffolds
4
biological scaffolds
4
scaffolds delivering
4
delivering reparative
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!