Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
This study summarizes the development and testing of a scaffold to promote engraftment of cells in the distal lung. A fibrinogen-fibronectin-vitronectin hydrogel (FFVH) was developed and optimized with respect to its mechanical and biological properties for this application. In vitro, FFVH scaffolds promoted attachment, histiotypic growth and expression of basement membrane proteins by primary ovine lung mesenchymal cells derived from lung biopsies. In vivo testing was then performed to assess the ability of FFVHs to promote cell engraftment in the sheep lung. Treatment with autologous cells delivered using FFVH was clinically well tolerated. Cells labelled with a fluorescent dye (PKH-26) were detected at treatment sites after 1 month. Tissue mass (assessed by CT imaging) and lung perfusion (assessed by nuclear scintigraphy) were increased at emphysema test sites. Post-treatment histology demonstrated cell proliferation and increased elastin expression without scarring or collapse. No treatment-related pathology was observed at healthy control sites. FFVH scaffolds promote cell attachment, spreading and extracellular matrix expression in vitro and apparent engraftment in vivo, with evidence of trophic effects on the surrounding tissue. Scaffolds of this type may contribute to the development of cell-based therapies for patients with end-stage pulmonary diseases.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/term.237 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!