Among the clinical complications of mechanical heart valves (MHVs), hemolysis was previously thought to result from Reynolds stresses in turbulent flows. A more recent hypothesis suggests viscous dissipative stresses at spatial scales similar in size to red blood cells may be related to hemolysis in MHVs, but the resolution of current instrumentation is insufficient to measure the smallest eddy sizes. We studied the St. Jude Medical (SJM) 27 mm valve in the aortic position of a pulsatile circulatory mock loop under physiologic conditions with particle image velocimetry (PIV). Assuming a dynamic equilibrium assumption between the resolved and sub-grid-scale (SGS) energy flux, the SGS energy flux was calculated from the strain rate tensor computed from the resolved velocity fields and the SGS stress was determined by the Smagorinsky model, from which the turbulence dissipation rate and then the viscous dissipative stresses were estimated. Our results showed Reynolds stresses up to 80 N/m2 throughout the cardiac cycle, and viscous dissipative stresses below 12 N/m2. The viscous dissipative stresses remain far below the threshold of red blood cell hemolysis, but could potentially damage platelets, implying the need for further study in the phenomenon of MHV hemolytic complications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s10439-009-9867-y | DOI Listing |
Electromagn Biol Med
January 2025
Department of Mathematics, University of Gour Banga, Malda, India.
Soft Matter
January 2025
James Franck Institute and Department of Physics, The University of Chicago, Chicago, Illinois 60637, USA.
We measure the response of open-cell polyurethane foams filled with a dense suspension of fumed silica particles in polyethylene glycol at compression speeds spanning several orders of magnitude. The gradual compressive stress increase of the composite material indicates the existence of shear rate gradients in the interstitial suspension caused by wide distributions in pore sizes in the disordered foam network. The energy dissipated during compression scales with an effective internal shear rate, allowing for the collapse of three data sets for different pore-size foams.
View Article and Find Full Text PDFNat Commun
January 2025
School of Life Sciences, University of Dundee, Dundee, UK.
Complex tissue flows in epithelia are driven by intra- and inter-cellular processes that generate, maintain, and coordinate mechanical forces. There has been growing evidence that cell shape anisotropy, manifested as nematic order, plays an important role in this process. Here we extend an active nematic vertex model by replacing substrate friction with internal viscous dissipation, dominant in epithelia not supported by a substrate or the extracellular matrix, which are found in many early-stage embryos.
View Article and Find Full Text PDFSci Rep
January 2025
Civil Engineering Department, Kardan University, Kabul, Afghanistan.
The current research deals with analytical analysis of Marangoni convection on ethylene glycol base hybrid nanofluid two-dimension flow with viscous dissipation through a porous medium, which have some important application in mechanical, civil, electronics, and chemical engineering. Two types of nanoparticles one is sliver and other is graphene oxide and ethylene glycol is used as base fluid in this research work. The authors applied appropriate transformations to convert a collection of dimension form of nonlinear partial differential equations to dimensionless form of nonlinear ordinary differential equations.
View Article and Find Full Text PDFPhys Rev E
November 2024
Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA.
Collisionless shocks are ubiquitous in space and astrophysical plasmas, and they are essential dynamical features of these systems. Lacking Coulomb collisions, these shocks are mediated by the anomalous dissipation provided by nonlinear plasma instabilities. By numerically resolving the structure of a steady-state, ion gyroviscous shock, we show that ion gyroviscosity, alone, can produce weak (M≲1.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!