Modulation of the vascular smooth-muscle-cell (vSMC) phenotype from a quiescent 'contractile' phenotype to a proliferative 'synthetic' phenotype has been implicated in vascular injury repair, as well as pathogenesis of vascular proliferative diseases. Both bone morphogenetic protein (BMP) and transforming growth factor-beta (TGFbeta)-signalling pathways promote a contractile phenotype, while the platelet-derived growth factor-BB (PDGF-BB)-signalling pathway promotes a switch to the synthetic phenotype. Here we show that PDGF-BB induces microRNA-24 (miR-24), which in turn leads to downregulation of Tribbles-like protein-3 (Trb3). Repression of Trb3 coincides with reduced expression of Smad proteins and decrease in BMP and TGFbeta signalling, promoting a synthetic phenotype in vSMCs. Inhibition of miR-24 by antisense oligonuclotides abrogates the downregulation of Trb3 as well as pro-synthetic activity of the PDGF-signalling pathway. Thus, this study provides a molecular basis for the antagonism between the PDGF and TGFbeta pathways, and its effect on the control of the vSMC phenotype.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2830697 | PMC |
http://dx.doi.org/10.1038/emboj.2009.370 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!