Acyl-CoA:monoacylglycerol acyltransferase (MGAT) plays a predominant role in the resynthesis of triacylglycerol in the small intestine, but its contribution to triacylglycerol synthesis in other tissues, such as the liver, is not clear. In this study, we identified a novel MGAT gene, which is identical with lysophosphatidylglycerol acyltransferase1 (LPGAT1). Mouse LPGAT1 is expressed in a number of tissues and most highly expressed in the liver. Hepatic LPGAT1 expression in diabetic db/db mice is higher than that in the control db/m mouse, which is consistent with increased hepatic MGAT activity in db/db mouse. To elucidate the role of LPGAT1 gene in lipid metabolism in db/db mice, we constructed an adenovirus of short hairpin RNA (shRNA) targeting LPGAT1 to selectively knockdown LPGAT1 gene expression in the liver. Hepatic MGAT activity and LPGAT1 expression in db/db mice infected with LPGAT1 shRNA adenovirus were significantly lower than those in mice infected with the control virus. Notably, treatment with LPGAT1 shRNA adenovirus caused a marked reduction in serum triacylglycerol and cholesterol levels and a significant increase in hepatic cholesterol level. These findings indicate that LPGAT1, a newly identified MGAT enzyme, plays a significant role in hepatic triacylglycerol synthesis and secretion in db/db mice.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3035505PMC
http://dx.doi.org/10.1194/jlr.M002584DOI Listing

Publication Analysis

Top Keywords

db/db mice
16
lpgat1
10
plays role
8
role hepatic
8
hepatic triacylglycerol
8
triacylglycerol synthesis
8
liver hepatic
8
lpgat1 expression
8
hepatic mgat
8
mgat activity
8

Similar Publications

miR378a-3p in serum extracellular vesicles is associated with pancreatic beta-cell mass in diabetic states.

Biochem Biophys Res Commun

January 2025

Division of Diabetes and Endocrinology, Department of Internal Medicine, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, Hyogo, 650-0017, Japan. Electronic address:

The condition in which the insulin secretory ability of pancreatic β-cells decreases in diabetes is extremely important, but there are currently no biomarkers that reflect pancreatic β-cell failure. Therefore, we conducted a search for biomarkers, using pancreatic β-cell-specific 3-Phosphoinositide-dependent protein kinase 1 (PDK1) knockout mice, which develop severe hyperglycemia due to a decrease in pancreatic β-cell mass without insulin resistance. The analysis was performed in young mice when metabolic abnormalities were not yet apparent.

View Article and Find Full Text PDF

The pathogenesis of painful diabetic neuropathy (PDN) is complicated and remains not fully understood. A disintegrin and metalloprotease 17 (ADAM17) is an enzyme that is responsible for the degradation of membrane proteins. ADAM17 is known to be activated under diabetes, but its involvement in PDN is ill defined.

View Article and Find Full Text PDF

Aims/hypothesis: Within the small intestine, neutrophils play an integral role in preventing bacterial infection. Upon interaction with bacteria or bacteria-derived antigens, neutrophils initiate a multi-staged response of which the terminal stage is NETosis, formation of protease-decorated nuclear DNA into extracellular traps. NETosis has a great propensity to elicit ocular damage and has been associated with diabetic retinopathy and diabetic macular oedema (DME) progression.

View Article and Find Full Text PDF

Background: Muscle atrophy is associated with Type 2 diabetes mellitus, which reduces the quality of life and lacks effective treatment strategies. Previously, it was determined that human umbilical cord mesenchymal stromal cell (hucMSC)-derived exosomes (EXOs) ameliorate diabetes-induced muscle atrophy. However, the systemic application of EXOs is less selective for diseased tissues, which reduces their efficacy and safety associated with their nonspecific biological distribution in vivo.

View Article and Find Full Text PDF

Mitochondrial function is crucial for hepatic lipid metabolism. Current research identifies two types of mitochondria based on their contact with lipid droplets: peridroplet mitochondria (PDM) and cytoplasmic mitochondria (CM). This work aimed to investigate the alterations of CM and PDM in metabolic dysfunction-associated steatotic liver disease (MASLD) induced by spontaneous type-2 diabetes mellitus (T2DM) in db/db mice.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!