Protein kinase D (PKD), a serine/threonine kinase with emerging cardiovascular functions, phosphorylates cardiac troponin I (cTnI) at Ser(22)/Ser(23), reduces myofilament Ca(2+) sensitivity, and accelerates cross-bridge cycle kinetics. Whether PKD regulates cardiac myofilament function entirely through cTnI phosphorylation at Ser(22)/Ser(23) remains to be established. To determine the role of cTnI phosphorylation at Ser(22)/Ser(23) in PKD-mediated regulation of cardiac myofilament function, we used transgenic mice that express cTnI in which Ser(22)/Ser(23) are substituted by nonphosphorylatable Ala (cTnI-Ala(2)). In skinned myocardium from wild-type (WT) mice, PKD increased cTnI phosphorylation at Ser(22)/Ser(23) and decreased the Ca(2+) sensitivity of force. In contrast, PKD had no effect on the Ca(2+) sensitivity of force in myocardium from cTnI-Ala(2) mice, in which Ser(22)/Ser(23) were unavailable for phosphorylation. Surprisingly, PKD accelerated cross-bridge cycle kinetics similarly in myocardium from WT and cTnI-Ala(2) mice. Because cardiac myosin-binding protein C (cMyBP-C) phosphorylation underlies cAMP-dependent protein kinase (PKA)-mediated acceleration of cross-bridge cycle kinetics, we explored whether PKD phosphorylates cMyBP-C at its PKA sites, using recombinant C1C2 fragments with or without site-specific Ser/Ala substitutions. Kinase assays confirmed that PKA phosphorylates Ser(273), Ser(282), and Ser(302), and revealed that PKD phosphorylates only Ser(302). Furthermore, PKD phosphorylated Ser(302) selectively and to a similar extent in native cMyBP-C of skinned myocardium from WT and cTnI-Ala(2) mice, and this phosphorylation occurred throughout the C-zones of sarcomeric A-bands. In conclusion, PKD reduces myofilament Ca(2+) sensitivity through cTnI phosphorylation at Ser(22)/Ser(23) but accelerates cross-bridge cycle kinetics by a distinct mechanism. PKD phosphorylates cMyBP-C at Ser(302), which may mediate the latter effect.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2820795 | PMC |
http://dx.doi.org/10.1074/jbc.M109.066456 | DOI Listing |
Front Physiol
December 2024
National Heart and Lung Institute, Imperial College London, London, United Kingdom.
Introduction: Adrenergic activation of protein kinase A (PKA) in cardiac muscle targets the sarcolemma, sarcoplasmic reticulum, and contractile apparatus to increase contractile force and heart rate. In the thin filaments of the contractile apparatus, cardiac troponin I (cTnI) Ser22 and Ser23 in the cardiac-specific N-terminal peptide (NcTnI: residues 1 to 32) are the targets for PKA phosphorylation. Phosphorylation causes a 2-3 fold decrease of affinity of cTn for Ca associated with a higher rate of Ca dissociation from cTnC leading to a faster relaxation rate of the cardiac muscle (lusitropy).
View Article and Find Full Text PDFNeurosci Lett
December 2024
School of Biomedical Engineering and Sciences, Virginia Tech, Blacksburg, VA, USA; Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, VA, USA; Veterans Affairs Medical Center, Salem, VA, USA. Electronic address:
Regulation of glutamate through glutamate-glutamine cycling is critical for mediating nervous system plasticity. Blast-induced traumatic brain injury (bTBI) has been linked to glutamate-dependent excitotoxicity, which may be potentiating chronic disorders such as post-traumatic epilepsy. The purpose of this study was to measure changes in the expression of astrocytic and neuronal proteins responsible for glutamatergic regulation at 4-, 12-, and 24 h in the cortex and hippocampus following single blast exposure in a rat model for bTBI.
View Article and Find Full Text PDFAdv Sci (Weinh)
December 2024
State Key Laboratory of Membrane Biology, National Biomedical Imaging Center and Institute of Molecular Medicine, College of Future Technology, Peking-Tsinghua Center for Life Sciences, PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, 100871, China.
Dopamine (DA) in the striatum is vital for motor and cognitive behaviors. Midbrain dopaminergic neurons generate both tonic and phasic action potential (AP) firing patterns in behavior mice. Besides AP numbers, whether and how different AP firing patterns per se modulate DA release remain largely unknown.
View Article and Find Full Text PDFBiosensors (Basel)
December 2024
Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ), Shenzhen 518107, China.
The demand for non-invasive, real-time health monitoring has driven advancements in wearable sensors for tracking biomarkers in sweat. Ammonium ions (NH) in sweat serve as indicators of metabolic function, muscle fatigue, and kidney health. Although current ion-selective all-solid-state printed sensors based on nanocomposites typically exhibit good sensitivity (~50 mV/log [NH]), low detection limits (LOD ranging from 10 to 10 M), and wide linearity ranges (from 10 to 10 M), few have reported the stability test results necessary for their integration into commercial products for future practical applications.
View Article and Find Full Text PDFJ Am Chem Soc
December 2024
Department of Chemistry, Massachusetts Institute of Technology, 170 Albany Street, Cambridge, Massachusetts 02139, United States.
The SARS-CoV-2 E protein conducts cations across the cell membrane to cause pathogenicity to infected cells. The high-resolution structures of the E transmembrane domain (ETM) in the closed state at neutral pH and in the open state at acidic pH have been determined. However, the ion conduction mechanism remains elusive.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!