We previously found that a population of colonic stromal cells that constitutively express high levels of prostaglandin-endoperoxide synthase 2 (Ptgs2, also known as Cox-2) altered their location in the lamina propria in response to injury in a Myd88-dependent manner (Brown, S. L., Riehl, T. E., Walker, M. R., Geske, M. J., Doherty, J. M., Stenson, W. F., and Stappenbeck, T. S. (2007) J. Clin. Invest. 117, 258-269). At the time of this study, the identity of these cells and the mechanism by which they expressed high levels of Ptgs2 were unknown. Here we found that these colonic stromal cells were mesenchymal stem cells (MSCs). These colonic MSCs expressed high Ptgs2 levels not through interaction with bacterial products but instead as a consequence of mRNA stabilization downstream of Fgf9 (fibroblast growth factor 9), a growth factor that is constitutively expressed by the intestinal epithelium. This stabilization was mediated partially through a mechanism involving endogenous CUG-binding protein 2 (CUGbp2). These studies suggest that Fgf9 is an important factor in the regulation of Ptgs2 in colonic MSCs and may be a factor involved in its constitutive expression in vivo.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2836106 | PMC |
http://dx.doi.org/10.1074/jbc.M109.032672 | DOI Listing |
Cell Biosci
January 2025
Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China.
Background: Myelin-laden foamy macrophages accumulate extensively in the lesion epicenter, exhibiting characteristics of autophagolysosomal dysfunction, which leads to prolonged inflammatory responses after spinal cord injury (SCI). Trehalose, known for its neuroprotective properties as an autophagy inducer, has yet to be fully explored for its potential to mitigate foamy macrophage formation and exert therapeutic effects in the context of SCI.
Results: We observed that trehalose significantly enhances macrophage phagocytosis and clearance of myelin in a dose-dependent manner in vitro.
J Exp Clin Cancer Res
January 2025
Department of General Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
Background: Colorectal cancer (CRC) has high incidence and mortality rates, with severe prognoses during invasion and metastasis stages. Despite advancements in diagnostic and therapeutic technologies, the impact of the tumour microenvironment, particularly extracellular matrix (ECM) stiffness, on CRC progression and metastasis is not fully understood.
Methods: This study included 107 CRC patients.
Cell Commun Signal
January 2025
Laboratory of Veterinary Clinical Pharmacology, College of Veterinary Medicine, Inner Mongolia Agricultural University, No. 306, Zhaowuda Road, Hohhot, 010018, China.
Wound healing is a highly coordinated process driven by intricate molecular signaling and dynamic interactions between diverse cell types. Nod-like receptor pyrin domain-containing protein 3 (NLRP3) has been implicated in the regulation of inflammation and tissue repair; however, its specific role in skin wound healing remains unclear. This study highlights the pivotal role of NLRP3 in effective skin wound healing, as demonstrated by delayed wound closure and altered cellular and molecular responses in NLRP3-deficient (NLRP3) mice.
View Article and Find Full Text PDFBMC Pharmacol Toxicol
January 2025
Department of Anatomy, College of Health Sciences, University of Ilorin, Ilorin, 240003, Nigeria.
Background: Glia mediated neuroinflammation and degeneration of inhibitory GABAergic interneurons are some of the hall marks of pyrethroid neurotoxicity. Here we investigated the sex specific responses of inflammatory cytokines, microglia, astrocyte and parvalbumin positive inhibitory GABAergic interneurons to λ-cyhalothrin (LCT) exposures in rats.
Methods: Equal numbers of male and female rats were given oral corn oil, 2 mg/kg.
J Nanobiotechnology
January 2025
Nurturing Center of Jiangsu Province for State Laboratory of AI Imaging & Interventional Radiology; Basic Medicine Research and Innovation Center of Ministry of Education, Medical School of Southeast University, 87 Dingjiaqiao, Nanjing, 210009, China.
Early diagnosis is critical for providing a timely window for effective therapy in pulmonary fibrosis (PF); however, achieving this remains a significant challenge. The distinct honeycombing patterns observed in computed tomography (CT) for the primary diagnosis of PF are typically only visible in patients with moderate to severe disease, often leading to missed opportunities for early intervention. In this study, we developed a nanoprobe designed to accumulate at fibroblastic foci and loaded with the CT sensitizer iodide to enable effective early diagnosis of PF.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!