Improved global estimates of terrestrial photosynthesis and respiration are critical for predicting the rate of change in atmospheric CO(2). The oxygen isotopic composition of atmospheric CO(2) can be used to estimate these fluxes because oxygen isotopic exchange between CO(2) and water creates distinct isotopic flux signatures. The enzyme carbonic anhydrase (CA) is known to accelerate this exchange in leaves, but the possibility of CA activity in soils is commonly neglected. Here, we report widespread accelerated soil CO(2) hydration. Exchange was 10-300 times faster than the uncatalyzed rate, consistent with typical population sizes for CA-containing soil microorganisms. Including accelerated soil hydration in global model simulations modifies contributions from soil and foliage to the global CO(18)O budget and eliminates persistent discrepancies existing between model and atmospheric observations. This enhanced soil hydration also increases the differences between the isotopic signatures of photosynthesis and respiration, particularly in the tropics, increasing the precision of CO(2) gross fluxes obtained by using the delta(18)O of atmospheric CO(2) by 50%.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2799687 | PMC |
http://dx.doi.org/10.1073/pnas.0905210106 | DOI Listing |
Chem Asian J
January 2025
Indian Institute of Technology Ropar, Chemistry, Nangal Road, 140001, Rupnagar, INDIA.
Carbon dioxide (CO2) capture and its subsequent catalytic fixation into usable compounds represent a potential approach for addressing the energy problem and the implications of global warming. Hence, it is necessary to develop effective catalytic systems required for the transformation of CO2 into valuable chemicals/fuels. Herein, we rationally designed a hydroxyl-functionalized porous organic framework (OH-POF) consisting of both acidic (OH) as well as basic N sites for the transformation of CO2 using epoxides for the production of cyclic carbonates (CCs), a useful commodity chemical under environmental-friendly, metal/solvent/co-catalyst-free conditions.
View Article and Find Full Text PDFPLoS One
January 2025
Department of Mechanical Engineering, Yeshwantrao Chavan College of Engineering, Nagpur, India.
The energy-exergy and environ-economic (4E) analysis was conducted on a solar still with and without a hybrid thermal energy storage system (TESS) and a solar air heater. The proposed solar still was modified by integrating a rectangular aluminium box filled with paraffin wax and black gravel as the TESS and coupled with a solar air heater. Paraffin wax was selected due to its widespread availability and proven effectiveness in accelerating desalination, improving process uniformity, and maintaining optimal temperature levels.
View Article and Find Full Text PDFAppl Biochem Biotechnol
January 2025
Department of Bioinformatic Engineering, Graduate School of Information Science and Technology, Osaka University, 1-5 Yamadaoka, Suita, Osaka, 565-0871, Japan.
Cyanobacteria are advantageous hosts for industrial applications toward achieving sustainable society due to their unique and superior properties such as atmospheric CO fixation via photosynthesis. However, cyanobacterial productivities tend to be weak compared to heterotrophic microbes. To enhance them, it is necessary to understand the fundamental metabolic mechanisms unique to cyanobacteria.
View Article and Find Full Text PDFPhys Chem Chem Phys
January 2025
Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester M1 7DN, UK.
CO capture is an important process for mitigating CO emissions in the atmosphere. Recently, ionic liquids have been identified as possible systems for CO capture processes. Major drawbacks of such systems are mostly in the high cost of synthesis of such liquids and poor biodegradability.
View Article and Find Full Text PDFMicrob Cell Fact
January 2025
Botany Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt.
Extensive anthropogenic activity has led to the accumulation of organic and inorganic contaminants in diverse ecosystems, which presents significant challenges for the environment and its inhabitants. Utilizing microalgae as a bioremediation tool can present a potential solution to these challenges. Microalgae have gained significant attention as a promising biotechnological solution for detoxifying environmental pollutants.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!