Bacterial single-stranded DNA-binding proteins (SSBs) help to recruit a diverse array of genome maintenance enzymes to their sites of action through direct protein interactions. For all cases examined to date, these interactions are mediated by the evolutionarily conserved C terminus of SSB (SSB-Ct). The essential nature of SSB protein interactions makes inhibitors that block SSB complex formation valuable biochemical tools and attractive potential antibacterial agents. Here, we identify four small molecules that disrupt complexes formed between Escherichia coli SSB and Exonuclease I (ExoI), a well-studied SSB-interacting enzyme. Each compound disrupts ExoI/SSB-Ct peptide complexes and abrogates SSB stimulation of ExoI nuclease activity. Structural and biochemical studies support a model for three of the compounds in which they compete with SSB for binding to ExoI. The fourth appears to rely on an allosteric mechanism to disrupt ExoI/SSB complexes. Subsets of the inhibitors block SSB-Ct complex formation with two other SSB-interaction partners as well, which highlights their utility as reagents for investigating the roles of SSB/protein interactions in diverse DNA replication, recombination, and repair reactions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2818963PMC
http://dx.doi.org/10.1073/pnas.0909191107DOI Listing

Publication Analysis

Top Keywords

roles ssb/protein
8
ssb/protein interactions
8
genome maintenance
8
protein interactions
8
inhibitors block
8
complex formation
8
ssb
6
interactions
5
small-molecule tools
4
tools dissecting
4

Similar Publications

G-quadruplex modulation by E. coli SSB: A comprehensive study on binding affinities and modes using single-molecule FRET.

Int J Biol Macromol

May 2024

Single Molecule Biophysics Lab, Chemical Sciences Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700064, India; Homi Bhabha National Institute, Mumbai, India. Electronic address:

G-quadruplexes (GQs) are essential guanine-rich secondary structures found in DNA and RNA, playing crucial roles in genomic maintenance and stability. Recent studies have unveiled GQs in the intergenic regions of the E. coli genome, suggesting their biological significance and potential as anti-microbial targets.

View Article and Find Full Text PDF

Tetrameric single-stranded (ss) DNA-binding proteins (SSBs) stabilize ssDNA intermediates formed during genome maintenance reactions in . SSBs also recruit proteins important for these processes through direct SSB-protein interactions, including proteins involved in DNA replication restart and recombination processes. SSBs are composed of an N-terminal oligomerization and ssDNA-binding domain, a C-terminal acidic tip that mediates SSB-protein interactions, and an internal intrinsically disordered linker (IDL).

View Article and Find Full Text PDF

RecA and SSB genome-wide distribution in ssDNA gaps and ends in Escherichia coli.

Nucleic Acids Res

June 2023

Departments of Biological Sciences and Chemistry, University of Southern California, Los Angeles, CA 90089-2910, USA.

Single-stranded DNA (ssDNA) gapped regions are common intermediates in DNA transactions. Using a new non-denaturing bisulfite treatment combined with ChIP-seq, abbreviated 'ssGap-seq', we explore RecA and SSB binding to ssDNA on a genomic scale in E. coli in a wide range of genetic backgrounds.

View Article and Find Full Text PDF

In Escherichia coli, the single-stranded DNA-binding protein (SSB) acts as a genome maintenance organizational hub by interacting with multiple DNA metabolism proteins. Many SSB-interacting proteins (SIPs) form complexes with SSB by docking onto its carboxy-terminal tip (SSB-Ct). An alternative interaction mode in which SIPs bind to PxxP motifs within an intrinsically-disordered linker (IDL) in SSB has been proposed for the RecG DNA helicase and other SIPs.

View Article and Find Full Text PDF

Escherichia coli single stranded (ss) DNA binding protein (SSB) plays essential roles in DNA maintenance. It binds ssDNA with high affinity through its N-terminal DNA binding core and recruits at least 17 different SSB interacting proteins (SIPs) that are involved in DNA replication, recombination, and repair via its nine amino acid acidic tip (SSB-Ct). E.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!