The hippocampus plays a critical role in recognition memory in both monkeys and humans. However, neurophysiological studies have rarely reported recognition memory signals among hippocampal neurons. The majority of these previous studies used variants of the delayed match-to-sample task; however, studies of the effects of hippocampal damage in monkey and humans have shown that another task of recognition memory, the visual paired-comparison, or visual preferential looking task (VPLT), is more sensitive to hippocampal damage than the delayed matching tasks. Accordingly, to examine possible recognition memory signals in the hippocampus, we recorded the activity of 131 hippocampal neurons in two monkeys performing the VPLT. Eighty-eight neurons (67%) responded significantly to stimulus presentation relative to the baseline prestimulus period. A substantial proportion of these visually responsive neurons (36%) showed significant firing-rate modulations that reflected whether stimuli were novel or familiar. Additionally, these firing-rate modulations were correlated with recognition memory performance on the VPLT such that larger modulations by stimulus novelty were associated with better performance. Together, these results provide evidence for a neural signal in the hippocampus that may support recognition memory performance.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2806723PMC
http://dx.doi.org/10.1073/pnas.0908378107DOI Listing

Publication Analysis

Top Keywords

recognition memory
28
memory signals
12
hippocampal neurons
8
hippocampal damage
8
firing-rate modulations
8
memory performance
8
recognition
7
memory
6
signals macaque
4
hippocampus
4

Similar Publications

Objectives: Maternal protein malnutrition alters brain functioning, impairing fetal development. Physical exercise during gestation benefits the fetal organism from maternal adaptive changes that may be neuroprotective. This study evaluated the effect of a low-protein diet associated with maternal voluntary physical activity (VPA) on rats' behavioral and brain electrophysiological parameters in the mother-pup dyad.

View Article and Find Full Text PDF

αβT cells protect vertebrates against many diseases, optimizing surveillance using mechanical force to distinguish between pathophysiologic cellular alterations and normal self-constituents. The multi-subunit αβT-cell receptor (TCR) operates outside of thermal equilibrium, harvesting energy via physical forces generated by T-cell motility and actin-myosin machinery. When a peptide-bound major histocompatibility complex molecule (pMHC) on an antigen presenting cell is ligated, the αβTCR on the T cell leverages force to form a catch bond, prolonging bond lifetime, and enhancing antigen discrimination.

View Article and Find Full Text PDF

Introduction: Tetanus, caused by , poses a life-threatening risk by affecting the nervous system and inducing muscle tightness. The objective of this study is to examine the knowledge, attitudes, and behaviors of non-medical university students regarding the tetanus vaccine in the context of post-road accidents.

Methods: A descriptive cross-sectional study was conducted in 2023, involving 378 students from non-medical disciplines, primarily from information technology, business administration, and engineering faculties, with a mean age of 20.

View Article and Find Full Text PDF

Bipolar disorder is a chronic disease that imposes a lifelong burden on those that suffer from it. Lithium is still considered both gold standard treatment and first-line maintenance treatment, and access to treatment with lithium is paramount to improving patient outcomes. However, access to adequate treatment is not only contingent on symptom recognition, accurate diagnosis, and individualization of treatment, but also affected by racial and ethnic disparities at each stage of patient experience.

View Article and Find Full Text PDF

Binding, a critical cognitive process likely mediated by attention, is essential for creating coherent object representations within a scene. This process is vulnerable in individuals with dementia, who exhibit deficits in visual working memory (VWM) binding, primarily tested using abstract arrays of standalone objects. To explore how binding operates in more realistic settings across the lifespan, we examined the impact of object saliency and semantic consistency on VWM binding and the role of overt attention.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!