Gram-negative bacteria belonging to the Brucella species cause chronic infections that can result in undulant fever, arthritis, and osteomyelitis in humans. Remarkably, Brucella sp. genomes encode a protein, named TcpB, that bears significant homology with mammalian Toll/IL-1 receptor domains and whose expression causes degradation of the phosphorylated, signal competent form of the adapter MyD88-adapter-like (MAL). This effect of TcpB is mediated through its box 1 region and has no effect on other TLR adapter proteins such as MyD88 or TIR-domain containing adapter protein-inducing IFNbeta. TcpB also does not affect a mutant, signal-incompetent form of MAL that cannot be phosphorylated. Interestingly, the presence of TcpB leads to enhanced polyubiquitination of MAL, which is likely responsible for its accelerated degradation. A Brucella abortus mutant lacking TcpB fails to reduce levels of MAL in infected macrophages. Therefore, TcpB represents a unique pathogen-derived molecule that suppresses host innate-immune responses by specifically targeting an individual adapter molecule in the TLR signaling pathway for degradation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3644118 | PMC |
http://dx.doi.org/10.4049/jimmunol.0902008 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!