Variations in linear and nonlinear postural measurements under achilles tendon vibration and unstable support-surface conditions.

J Mot Behav

International Space University, Department of Health and Human Performance, Center for Neuromotor and Biomechanics Research, University of Houston, Houston, Texas 77004, USA.

Published: March 2010

Reduced support-surface stability has been shown to attenuate the effect of Achilles tendon vibration on backward body displacement. In the present study, 20 participants performed a quiet, upright standing task on a stable and sway-referenced support, with and without vibration. The authors calculated equilibrium scores (ES), approximate entropy (ApEn), and mean and peak power spectral density frequencies of center-of-pressure variations. It was found that ES values decreased with the addition of vibration and in the sway-referenced support condition. ApEn values decreased with the addition of vibration but only with a stable support. Conversely, mean and peak frequencies increased with the addition of vibration, independent of support stability. These results suggest that the role of ankle proprioceptive input changes depending on support-surface characteristics and demonstrate the value of using both linear and nonlinear measures of postural sway.

Download full-text PDF

Source
http://dx.doi.org/10.1080/00222890903397103DOI Listing

Publication Analysis

Top Keywords

addition vibration
12
linear nonlinear
8
achilles tendon
8
tendon vibration
8
sway-referenced support
8
values decreased
8
decreased addition
8
vibration
6
variations linear
4
nonlinear postural
4

Similar Publications

The low durability of bioprosthetic heart valves (BHV), between 10-15 years, is associated with the development of leaflets flutter. Despite increasing calcification and structural damage of the BHV, leaflets flutter is an understudied condition. Therefore, the objective of this study is compare the oscillation characteristics of BHV leaflets obtained by the finite element method (FEM) technique and by the fluid-structural interaction (FSI) technique.

View Article and Find Full Text PDF

Pharmacological and non-pharmacological therapies for prevention and treatment of osteoporosis in Duchenne Muscular Dystrophy: A systematic review.

Bone

January 2025

Department of Paediatric Endocrinology, Royal Hospital for Children, Glasgow, United Kingdom; School of Medicine, Dentistry & Nursing, University of Glasgow, United Kingdom. Electronic address:

Background: Long term glucocorticoid treatment in Duchenne Muscular Dystrophy (DMD) is associated with a high incidence of fragility fractures. This systematic review aims to assess the current evidence for pharmacological and non-pharmacological treatment for osteoporosis in children and adults with DMD.

Methods: Three online databases (Embase, Medline, Cochrane Library) were searched for studies that evaluated interventions for treatment or prevention of osteoporosis in DMD.

View Article and Find Full Text PDF

Chalcones are organic substances that have diverse biological activities and exhibit potential for the treatment of various diseases. The properties of these substances depend on the type and position of the functional group attached to their aromatic rings. As a result, in this work the chalcone (2E)-1-(4-hydroxyphenyl)-3-(4-methoxyphenyl)-prop-2-en-1-one (CHO) was investigated by Raman spectroscopy and computational calculations at high pressures with the objective of analyzing its structural stability.

View Article and Find Full Text PDF

Metamaterials are pushing the limits of traditional materials and are fascinating frontiers in scientific innovation. Mechanical metamaterials (MMs) are a category of metamaterials that display properties and performances that cannot be realized in conventional materials. Exploring the mechanical properties and various aspects of vibration and damping control is becoming a crucial research area.

View Article and Find Full Text PDF

Flexible, wearable, piezoresistive sensors have significant potential for applications in wearable electronics and electronic skin fields due to their simple structure and durability. Highly sensitive, flexible, piezoresistive sensors with the ability to monitor laryngeal articulatory vibration supply a new, more comfortable and versatile way to aid communication for people with speech disorders. Here, we present a piezoresistive sensor with a novel microstructure that combines insulating and conductive properties.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!