Disruption of the blood-brain barrier (BBB) may be transiently achieved via high-frequency focused spherical ultrasound in the presence of microbubbles. In this experimental animal study, we sought to determine whether focal reversible opening of the BBB may be achieved using low-frequency (i.e., 20-30 kHz) planar ultrasonic waves. In the presence of microbubbles, we were able to obtain BBB opening using non-focused ultrasound irradiation with a frequency as low as 28 kHz. We also achieved a tight regulation of the ultrasound patterns by using a mechanical scanning device equipped with a pinhole. Histologic examination of the brains supported the feasibility of our system. The areas of BBB disruption obtained with this method were large enough to cover a typical circumscribed cerebral tumor mass. The inherent advantages of our BBB opening method include an improved portability, the possibility to obtain fairly wide areas of BBB opening and a low incidence of hemorrhagic complications. In addition, our system has the potential to reduce the need for image guidance for treating superficial brain lesions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ultrasmedbio.2009.10.004 | DOI Listing |
Pharmaceutics
January 2025
Department of Pharmaceutical Sciences, West Virginia University School of Pharmacy, Morgantown, WV 26505, USA.
The blood-brain barrier (BBB) is selectively permeable, but it also poses significant challenges for treating CNS diseases. Low-intensity focused ultrasound (LiFUS), paired with microbubbles is a promising, non-invasive technique for transiently opening the BBB, allowing enhanced drug delivery to the central nervous system (CNS). However, the downstream physiological effects following BBB opening, particularly secondary responses, are not well understood.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Laboratory of Foodomics, Institute of Food Science Research, CIAL, CSIC, Nicolás Cabrera 9, 28049 Madrid, Spain.
This study investigates the biorefinery approach to extracting blood-brain barrier (BBB)-permeable compounds from Labill. and L. for neuroprotective purposes.
View Article and Find Full Text PDFJ Physiol
January 2025
College of Medicine, Department of Pharmacology, University of Arizona, Tucson, AZ, USA.
The endocannabinoid system's significance in maintaining blood-brain barrier (BBB) integrity under physiological and pathological conditions is suggested by several reports, but the underlying molecular mechanisms are not well understood. In this paper, we investigated the effects of depletion of 2-arachidonoylglycerol (2-AG), one of the main endocannabinoids in the central nervous system, on BBB integrity using pharmacological tools. Female Sprague-Dawley rats were injected with the diacylglycerol lipase α (DAGLα) inhibitor LEI-106 (40 mg/kg, i.
View Article and Find Full Text PDFNat Prod Res
January 2025
Engineering Research Center of Modern Preparation Technology of TCM of Ministry of Education, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
Borneolum (BO) is an effectiveness adjuvant in facilitating the transportation of central nervous system drugs to the brain by opening the blood-brain barrier (BBB). Citalopram hydrobromide (CIT-HBr), a widely prescribed serotonin (5-HT) reuptake inhibitor, restricts the efficacy due to the BBB, resulting in slow onset and systemic side effects. Enhancing CIT-HBr's efficacy through BO appears to be a promising approach.
View Article and Find Full Text PDFAlzheimers Dement
January 2025
Institute for Biomedical Engineering and Institute of Pharmacology and Toxicology, Faculty of Medicine, University of Zurich, Zurich, Switzerland.
Introduction: Transcranial pulse stimulation (TPS) is increasingly being investigated as a promising potential treatment for Alzheimer's disease (AD). Although the safety and preliminary clinical efficacy of TPS short pulses have been supported by neuropsychological scores in treated AD patients, its fundamental mechanisms are uncharted.
Methods: Herein, we used a multi-modal preclinical imaging platform combining real-time volumetric optoacoustic tomography, contrast-enhanced magnetic resonance imaging, and ex vivo immunofluorescence to comprehensively analyze structural and hemodynamic effects induced by TPS.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!