In the previous paper of this issue, [Celebre, G.; Ionescu, A. J. Phys. Chem. B doi: 10.1021/jp907310g], following a generalized reaction field approach in the linear response approximation, we were successful in obtaining an analytical compact expression for the mean-field anisotropic orientational potential U(Q-EFG) theoretically experienced by a highly idealized nonionic and apolar solute, considered as a point quadrupole immersed in a uniaxial polarizable continuum medium (model of a nematic solvent comprised of dipolar mesogenic molecules). The term U(Q-EFG) describes the electrostatic interaction between the electric quadrupole of the solute and the electric field gradient induced at the solute by the surrounding medium polarized by the distribution of electric charges representing the quadrupolar solute itself. In the present paper, the obtained potential has been considered as an additional orientational interaction contributing to the solute ordering, besides the well-recognized and very effective "short-range" (size-and-shape-dictated) mechanisms. Since in our theory the solvent is characterized by its dielectric tensor, the model has been widely tested by taking as references the experimental order parameters of several uniaxial and biaxial different small rigid probe molecules (H(2), N(2), acetylene, allene, propyne, benzene, hexafluorobenzene, 1,4-difluorobenzene, and norbornadiene) dissolved in the nematic solvents ZLI1132 (Deltaepsilon >> 0) and EBBA (Deltaepsilon < 0); moreover, the order parameters of the same solutes in the so-called nematic "magic mixture" (45 wt % EBBA + 55 wt % ZLI1132), where the short-range orientational effects are commonly believed to be very dominant, have been conventionally assumed as reference of the absence of electrostatic orientational effects. The experimental order parameters of the treated solutes, obtained in the past by liquid crystal NMR and available from literature, have been then compared with those theoretically predicted by our theoretical approach in order to obtain useful hints about two basic points, (a) the real physical nature of the interactions (other than the "size-and-shape") involved in the orientational mechanisms and (b) the conceptual effectiveness of the suggested mean-field approach in describing this kind of phenomena. Successes and failures of the approach in the predictions are discussed at length, along with their possible reasons and implications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jp907311k | DOI Listing |
J Anat
January 2025
Department of Biology, Università di Pisa, Pisa, Italy.
The fibula, despite being traditionally overlooked compared to the femur and the tibia, has recently received attention in primate functional morphology due to its correlation with the degree of arboreality (DOA). Highlighting further fibular features that are associated with arboreal habits would be key to improving palaeobiological inferences in fossil specimens. Here we present the first investigation on the trabecular bone structure of the primate fibula, focusing on the distal epiphysis, across a vast array of species.
View Article and Find Full Text PDFNanophotonics
January 2025
Institute of Physics, Swiss Federal Institute of Technology Lausanne (EPFL), CH-1015 Lausanne, Switzerland.
Sum-frequency generation (SFG) enables the coherent upconversion of electromagnetic signals and plays a significant role in mid-infrared vibrational spectroscopy for molecular analysis. Recent research indicates that plasmonic nanocavities, which confine light to extremely small volumes, can facilitate the detection of vibrational SFG signals from individual molecules by leveraging surface-enhanced Raman scattering combined with mid-infrared laser excitation. In this article, we compute the degree of second order coherence ( (0)) of the upconverted mid-infrared field under realistic parameters and accounting for the anharmonic potential that characterizes vibrational modes of individual molecules.
View Article and Find Full Text PDFFront Oncol
January 2025
Department of Radiology, the Second Affiliated Hospital of Nanjing Medical University, Nanjing, China.
Background: In the realm of breast cancer diagnosis and treatment, accurately discerning molecular subtypes is of paramount importance, especially when aiming to avoid invasive tests. The updated guidelines for diagnosing and treating HER2 positive advanced breast cancer, as presented at the 2021 National Breast Cancer Conference and the Annual Meeting of the Chinese Society of Clinical Oncology, highlight the significance of this approach. A new generation of drug-antibody combinations has emerged, expanding the array of treatment options for HER2 positive advanced breast cancer and significantly improving patient survival rates.
View Article and Find Full Text PDFFront Cell Dev Biol
January 2025
Department of Physics, Faculty of Sciences, FAU Erlangen-Nuremberg, Erlangen, Germany.
The glycocalyx is a dense and dynamic layer of glycosylated species that covers every cell in the human body. It plays crucial roles in various cellular processes in health and disease, such as cancer immune evasion, cancer immune therapy, blastocyst implantation, and functional attenuation of membrane protein diffusion. In addition, alterations in glycocalyx structure may play an important role in ocular surface diseases, e.
View Article and Find Full Text PDFFront Nutr
January 2025
College of Mechanical and Electrical Engineering, Shihezi University, Shihezi, China.
In order to improve the drying quality of winter jujube slices and find the best drying process parameters, RF + HA (radio frequency combined hot air) drying technology was used in this study to study the effects of plate spacing, RF application time, and RF interval time on the quality of winter jujube slices. Vitamin C () content, red and green value (), and drying rate () were used as quality indexes, and the changing trend of texture properties was analyzed. According to the conclusion of the single-factor experiment, the orthogonal experiment is carried out, and the parameters of each factor in the orthogonal experiment are optimized by the comprehensive balance method and matrix analysis method.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!