Nanoparticle coatings for enhanced capture of flowing cells in microtubes.

ACS Nano

Department of Biomedical Engineering, University of Rochester, Rochester, New York 14627, USA.

Published: January 2010

Recently, a flow-based selectin-dependent method for the capture and enrichment of specific types of cells (CD34+ hematopoetic stem and progenitor cells and human leukemia HL60) from peripheral blood was demonstrated. However, these devices depend on a monolayer of selectin protein, which has been shown to have a maximum binding efficiency as a function of surface area. A novel surface coating of colloidal silica nanoparticles was designed that alters the surface roughness resulting in increased surface area. The nanoparticles were adhered using either an inorganic titanate resinous coating or an organic polymer of poly-L-lysine. Using Alexa Fluor 647 conjugated P-selectin, an increase in protein adsorption of up to 35% when compared to control was observed. During perfusion experiments using P-selectin-coated microtubes, we observed increased cell capture and greatly decreased rolling velocity at equivalent protein concentration compared to nonparticle control. Atomic force microscopy showed increased surface roughness consistent with the nanoparticle mean diameter, suggesting a monolayer of particles. These results support the coating's potential to improve existing cell capture implantable devices for a variety of therapeutic and scientific uses.

Download full-text PDF

Source
http://dx.doi.org/10.1021/nn900442cDOI Listing

Publication Analysis

Top Keywords

surface area
8
surface roughness
8
increased surface
8
cell capture
8
surface
5
nanoparticle coatings
4
coatings enhanced
4
capture
4
enhanced capture
4
capture flowing
4

Similar Publications

Interfacial electromigration for accelerated reactions.

Anal Chim Acta

May 2025

Department of Chemistry, Texas A&M University, 580 Ross St., College Station, TX, 77843, USA. Electronic address:

Background: Microdroplets have emerged as effective confined-volume reactors due to their remarkable ability to accelerate chemical reactions compared to bulk systems. Recent research highlights the crucial role of air-liquid interfaces in this acceleration. A microdroplet can be viewed as having two kinetically distinct regions: the interface and the interior.

View Article and Find Full Text PDF

Background: Ambient Mass Spectrometry (AMS) encompasses a group of techniques that have emerged as powerful strategies for direct, in-situ and high-throughput analysis, also in compliance with the principles of green analytical chemistry. Swab Touch Spray-Mass Spectrometry (Swab TS-MS) is a home-made AMS technique that involves the use of a medical swab as sampling tool and electrospray probe. To date, Swab TS-MS has been applied only for the analysis of small molecules, especially in forensic and medical fields, leaving the analysis of peptides and proteins still unexplored.

View Article and Find Full Text PDF

In the present study, magnetic-calcined bamboo composite adsorbents (MCBC200, MCBC400, MCBC600, MCBC800, and MCBC1000) were prepared, and their physicochemical characteristics (scanning electron microscope images, differential thermogravimetric analysis, Fourier transform-IR, specific surface area, surface functional groups, and point of zero charge [pH]) were evaluated. Furthermore, the adsorption capacity of methylene blue (MB, cationic dye) using the prepared adsorbents was assessed. The value of pH and the specific surface area of MCBC400 were 7.

View Article and Find Full Text PDF

Objectives: Due to the severe shortage of donor corneas for transplantation in China, corneal component transplantation may expand the available donor pool. This study aims to evaluate the safety and feasibility of corneal component transplantation by examining the distribution of hepatitis B surface antigen (HBsAg) in corneas from HBsAg-seropositive donors under different storage media.

Methods: Ten corneas (from 6 donors) donated between December 2019 and March 2021 and stored at the Eye Bank of Xiangya Third Hospital, Central South University, were analyzed.

View Article and Find Full Text PDF

Mechanism of the anterior cingulate cortex in sleep regulation.

Zhong Nan Da Xue Xue Bao Yi Xue Ban

October 2024

Department of Anesthesiology, Second Affiliated Hospital of University of South China, Hengyang Hunan 421000.

Sleep disorders refer to conditions characterized by abnormal sleep duration and quality, including insomnia, sleep-disordered breathing, and fragmented sleep, and have become one of the major challenges to modern physical and mental health. The anterior cingulate cortex (ACC) is an important component of the limbic system, located between the cingulate sulcus and the callosal sulcus on the medial surface of the cerebral hemispheres, and plays a critical role in regulating autonomic movements, emotions, and pain. It is an important part of the sleep regulation system.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!