For the first time the rhodium-catalyzed 1,4-addition of organoboranes to hindered Baylis-Hillman adducts, trisubstituted alkenes, affording highly functionalized alkenes, via addition of the organoboranes and hydroxyelimination, is reported. Moreover, preliminary results have shown that, thanks to the use of a monosubstituted chiral diene ligand, enantio-enriched products were easily accessible, while chiral phosphane ligands were completely inappropriate in this reaction.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/ol902646j | DOI Listing |
Molecules
January 2025
School of Chemistry and Materials Engineering, Huainan Normal University, Huainan 232038, China.
Efficient access to pyranoisoquinoline derivatives via rhodium-catalyzed double C-H functionalization of phenyl oxadiazoles and diazo compounds has been developed. Two C-C bonds and one C-O and C-N bond formation was realized by this tandem reaction, along with the formation of two heterocycles, affording diversified pyran-fused isoquinolines in moderate to good yields with broad functional group tolerance under mild reaction conditions.
View Article and Find Full Text PDFRSC Adv
December 2024
Natural and Medical Sciences Research Center (NMSRC), University of Nizwa Nizwa 616 Sulanate of Oman.
Diazo compounds are known to be good coupling partners in the synthesis of heterocycles, carbocycles and functionalized molecules a rhodium carbene-based strategy. Many heterocyclic and carbocyclic compounds, including isoquinolones and isocoumarins, quinoxalines, indoles, pyrrones, benzothazines, enaminones, benzenes and seven-membered rings, can be constructed using this rhodium-catalyzed system. The reaction mechanism involves C-H activation, carbene insertion and an annulation/functionalization sequence.
View Article and Find Full Text PDFOrg Lett
December 2024
School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China.
Herein, we report the rhodium-catalyzed -alkenyl transfer from tertiary allylic alcohols to aryl trifluoromethyl ketones, which provided an efficient way of preparation of trifluoromethyl-containing -allylic alcohols via β--alkenyl elimination. The key -alkenyl-rhodium species were generated with a high degree of stereochemical retention. This reaction featured a broad substrate scope and good functional tolerance and would offer a fascinating approach for the synthesis of -alkenes.
View Article and Find Full Text PDFOrg Lett
December 2024
Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, and Key Laboratory of Organosilicon Material Technology of Zhejiang Province, College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, P. R. China.
Catalytic hydrosilylation of 1,1-disubstituted enamides is one of the most challenging and synthetically useful processes in organosilicon chemistry and asymmetric catalysis. Herein, we report a rhodium-catalyzed enantioselective hydrosilylation of α-arylenamides with substituted hydrosilanes with the aid of chiral P-ligand, including newly developed spirophosphite ligands, giving various chiral β-silylated amides in excellent yields with good to excellent enantioselectivities (98:2 er after recrystallization). In addition, chiral β-silylated amines can be obtained by further functionalization of the hydrosilylation product.
View Article and Find Full Text PDFChem Commun (Camb)
December 2024
School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, P. R. China.
A Rh(III)-catalyzed C-H α-fluoroalkenylation/annulation of β-ketosulfoxonium ylides with 2,2-difluorovinyl tosylate/oxadiazolones was realized, which afforded various -fluoroalkenylation β-ketosulfoxonium ylides with high -selectivity and diverse oxadiazolone fused-isoquinolines. This protocol featured mild conditions, broad substrate scope, and functional-group compatibility. In addition, scale-up synthesis, related applications and preliminary mechanistic explorations were also accomplished.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!