Transferred DNA (T-DNA) insertions of Agrobacterium gene fusion vectors and corresponding insertional target sites were isolated from transgenic and wild type Arabidopsis thaliana plants. Nucleotide sequence comparison of wild type and T-DNA-tagged genomic loci showed that T-DNA integration resulted in target site deletions of 29-73 bp. In those cases where integrated T-DNA segments turned out to be smaller than canonical ones, the break-points of target deletions and T-DNA insertions overlapped and consisted of 5-7 identical nucleotides. Formation of precise junctions at the right T-DNA border, and DNA sequence homology between the left termini of T-DNA segments and break-points of target deletions were observed in those cases where full-length canonical T-DNA inserts were very precisely replacing plant target DNA sequences. Aberrant junctions were observed in those transformants where termini of T-DNA segments showed no homology to break-points of target sequence deletions. Homology between short segments within target sites and T-DNA, as well as conversion and duplication of DNA sequences at junctions, suggests that T-DNA integration results from illegitimate recombination. The data suggest that while the left T-DNA terminus and both target termini participate in partial pairing and DNA repair, the right T-DNA terminus plays an essential role in the recognition of the target and in the formation of a primary synapsis during integration.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC452704 | PMC |
http://dx.doi.org/10.1002/j.1460-2075.1991.tb07999.x | DOI Listing |
Plant Cell Physiol
January 2025
Institute for Chemical Research, Kyoto University, Gokasho, Uji, 611-0011 Kyoto, Japan.
Lotus japonicus-ROOT HAIR LESS1-LIKE1 (LRL1) of Arabidopsis thaliana encodes a basic helix-loop-helix (bHLH) transcription factor (TF) involved in root hair development. Root hair development is regulated by an elaborate transcriptional network, in which GLABRA2 (GL2), a key negative regulator, directly represses bHLH TF genes, including LRL1 and ROOT HAIR DEFECTIVE6 (RHD6). Although RHD6 and its paralogous TFs have been shown to connect downstream to genes involved in cell morphological events such as endomembrane and cell wall modification, the network downstream of LRL1 remains elusive.
View Article and Find Full Text PDFJ Fungi (Basel)
December 2024
College of Plant Sciences, Jilin University, Changchun 130062, China.
, the grey mould fungus affecting over 1400 plant species, employs infection cushion (IC), a branched and claw-like structure formed by mycelia, as a critical strategy to breach host surface barriers. However, the molecular mechanisms underlying IC formation remain largely unexplored. In this study, we utilized a forward genetics approach to establish a large T-DNA tagged population of , which contained 14,000 transformants.
View Article and Find Full Text PDFPlant Physiol Biochem
January 2025
Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, 29 Geumgu-gil, Jeongeup-si, Jeonbuk-do, 56212, Republic of Korea.
Argonaute (AGO) proteins are involved in gene expression and genome integrity during biotic and abiotic stress responses. AGO2 mediates double-strand break (DSB) repair in DNA damage response (DDR) induced by genotoxic stress. However, beyond DSB repair, the involvement of AGO proteins in DDR remains unknown.
View Article and Find Full Text PDFNew Phytol
January 2025
Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, 9052, Belgium.
Precise gene-editing methods are valuable tools to enhance genetic traits. Gene editing is commonly achieved via stable integration of a gene-editing cassette in the plant's genome. However, this technique is unfavorable for field applications, especially in vegetatively propagated plants, such as many commercial tree species, where the gene-editing cassette cannot be segregated away without breaking the genetic constitution of the elite variety.
View Article and Find Full Text PDFFood Chem (Oxf)
June 2025
Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, PR China.
The clear molecular characterization of genetically modified (GM) plants and animals is a prerequisite for obtaining regulatory approval and safety certification for commercial cultivation. This characterization includes the identification of the transferred DNA (T-DNA) insertion site, its flanking sequences, the copy number of inserted genes, and the detection of any unintended genomic alterations accompanying the transformation process. In this study, we performed a comprehensive molecular characterization of the well-known GM soybean event FG72 using paired-end whole-genome sequencing (PE-WGS).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!