Study of the Effect of Methyl Jasmonate Concentration on Aflatoxin B(1) Biosynthesis by Aspergillus parasiticus in Yeast Extract Sucrose Medium.

Int J Microbiol

Department of Food Chemistry, School of Chemistry, University of Athens, Panepistimiopolis Zogra-fou, 15784 Athens, Greece.

Published: July 2011

Aflatoxin B(1) (AFB(1)) is a carcinogenic metabolite produced by certain Aspergillus species on agricultural commodities. AFB(1) biosynthesis is affected by jasmonic acid and also by its methylester (MeJA), a plant growth regulator derived from linoleic acid. This study reports the effect of MeJA on the growth of A. parasiticus and AFB(1) output in yeast extract sucrose (YES) medium when added at three different concentrations; namely, 10(-2) M, 10(-4) M, and 10(-6) M. AFB(1) determination was performed by immunoaffinity and HPLC. MeJA at 10(-4) and 10(-6) M concentrations had no significant effect on mycelial growth but did affect AFB(1) production after the 7th day of incubation; on the 12th day, AFB(1) production was increased by 212.7% and 141.6% compared to the control samples (addition of 10(-6) M and 10(-4) M MeJA, resp.). Treatment of A. parasiticus cultures with 10(-2) M MeJA inhibited mycelial growth and AFB(1) production as well. These results suggest that the effect of MeJA on AFB(1) biosynthesis by A. parasiticus depends on the MeJA concentration used.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2789378PMC
http://dx.doi.org/10.1155/2009/842626DOI Listing

Publication Analysis

Top Keywords

afb1 production
12
yeast extract
8
extract sucrose
8
sucrose medium
8
afb1
8
afb1 biosynthesis
8
10-4 10-6
8
mycelial growth
8
meja
7
study methyl
4

Similar Publications

Risk ranking of mycotoxins in plant-based meat and dairy alternatives under protein transition scenarios.

Food Res Int

January 2025

Faculty of Bioscience Engineering, Department of Food Technology, Safety and Health, Ghent University, Ghent, Belgium.

While reducing the consumption of animal-source foods is recommended for planetary and human health, potential emerging food safety risks associated with the transition to dietary patterns featuring plant-based meat (PBMA) and dairy alternatives (PBDA) remain unexplored. We assessed the exposure to mycotoxins and ranked the associated health risks related to the consumption of PBMA and PBDA. We simulated diets by replacing animal-source proteins with their plant-based alternatives.

View Article and Find Full Text PDF

Bioavailability study of OTA, ZEN, and AFB1 along with bioactive compounds from tiger nut beverage and its by-products.

Food Res Int

January 2025

Laboratory of Food Chemistry and Toxicology, Department of Preventive Medicine and Public Health, Food Science, Toxicology and Forensic Medicine, Faculty of Pharmacy, University of Valencia, Avda. Vicent Andrés Estellés, s/n, 46100 Burjassot, Spain.

Mycotoxins pose significant health risks due to their prevalence in food products and severe health implications, including carcinogenicity. This study investigates the bioavailability of mycotoxins aflatoxin B1 (AFB1), ochratoxin A (OTA), and zearalenone (ZEN) individually and combined, in the presence of identified polyphenols from tiger nut beverage (TNB) and tiger nut by-product (TNBP) using the in vitro model Caco-2 cells, which simulates the human intestinal barrier. The objective is to understand how bioactive compounds from TNBP can mitigate the effects of AFB1, OTA and ZEN (and their combination) by bioavailability interference, contributing to safer food products and innovative food safety strategies.

View Article and Find Full Text PDF

Background: Aflatoxin B (AFB), AFB, AFG, and AFG are Group 1 human carcinogens, with AFB notably increasing hepatocellular carcinoma (HCC) risk. Sichuan Province, China, with its subtropical monsoon climate, is susceptible to AF contamination in various food items. However, the HCC disease burden attributable to lifetime chronic dietary AF intake in Sichuan has not been investigated.

View Article and Find Full Text PDF

The development of a sensory signal amplification approach is very crucial for rapid and precise detection of aflatoxin B (AFB). However, such approaches remain scarce due to the weak interactions between AFB and the sensing probes. Herein, the first example of a dual-excitation fluorescent platform for antibody-free AFB detection is reported, which is assembled by an ordered π-π stack of cationic perylene derivative (PTHA) and tris(2,2'-bipyridine)ruthenium(II) [Ru(bpy)].

View Article and Find Full Text PDF

Aflatoxin B1 (AFB1) has been recognized as a serious health risk for ruminant animals. From a molecular perspective, indole-3-acid (IAA) possesses the potential to enhance the removal of AFB1 by rumen microbiota. Therefore, this study aims to investigate the impact of different concentrations of IAA on the removal of AFB1 by rumen microbiota using an technique.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!