Mutations in BRCA1 are associated with a high risk of breast and ovarian cancer. BRCA1 participates in the DNA damage response and acts as a ubiquitin ligase. However, its regulation remains poorly understood. Here we report that BRCA1 is modified by small ubiquitin-like modifier (SUMO) in response to genotoxic stress, and co-localizes at sites of DNA damage with SUMO1, SUMO2/3 and the SUMO-conjugating enzyme Ubc9. PIAS SUMO E3 ligases co-localize with and modulate SUMO modification of BRCA1, and are required for BRCA1 ubiquitin ligase activity in cells. In vitro SUMO modification of the BRCA1/BARD1 heterodimer greatly increases its ligase activity, identifying it as a SUMO-regulated ubiquitin ligase (SRUbL). Further, PIAS SUMO ligases are required for complete accumulation of double-stranded DNA (dsDNA) damage-repair proteins subsequent to RNF8 accrual, and for proficient double-strand break repair. These data demonstrate that the SUMOylation pathway plays a significant role in mammalian DNA damage response.

Download full-text PDF

Source
http://dx.doi.org/10.1038/nature08593DOI Listing

Publication Analysis

Top Keywords

sumo modification
12
dna damage
12
ubiquitin ligase
12
response genotoxic
8
genotoxic stress
8
damage response
8
pias sumo
8
sumo ligases
8
ligase activity
8
sumo
6

Similar Publications

SUMO2 rescues neuronal and glial cells from the toxicity of P301L Tau mutant.

Front Cell Neurosci

December 2024

Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy.

Introduction: Abnormal intracellular accumulation of Tau aggregates is a hallmark of Alzheimer's disease (AD) and other Tauopathies, such as Frontotemporal dementia (FTD). Tau deposits primarily affect neurons, but evidence indicates that glial cells may also be affected and contribute distinctively to disease progression. Cells can respond to toxic insults by orchestrating global changes in posttranslational modifications of their proteome.

View Article and Find Full Text PDF

Prolonged self-assembly of H. pylori ferritin globules at physiological conditions.

Biochem Biophys Res Commun

December 2024

Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, 141700, Russian Federation; Frank Laboratory of Neutron Physics, Joint Institute for Nuclear Research, Dubna, 141980, Russian Federation. Electronic address:

One of the promising drug delivery tools is ferritin, which features high stability at a wide range of conditions and protects cargo by its spherical protein shell. We studied the self-assembly into homoglobules of ferritin from H. pylori and a chimeric protein ferritin-SUMO.

View Article and Find Full Text PDF

Background: The modification of protein substrates by small ubiquitin-related modifier (SUMO) plays a vital role in plants subjected to biotic and abiotic stresses. However, its role in the stress responses of Brassica plants remains poorly understood.

Results: A genome-wide analysis revealed the presence of 30 SUMOylation genes in the Caixin genome.

View Article and Find Full Text PDF

SUMOylation, the modification of proteins with a small ubiquitin-like modifier (SUMO), is known to regulate various cellular events, including cell division. This process is dynamic, with its status depending on the balance between SUMOylation and deSUMOylation. While the regulation of cell division by sentrin-specific protease (SENP) family proteins through deSUMOylation has been investigated, the role of another deSUMOylase, deSUMOylating isopeptidase 1 (DESI1), remains unknown.

View Article and Find Full Text PDF

Bone marrow stromal cells protect myeloma cells from ferroptosis through GPX4 deSUMOylation.

Cancer Lett

December 2024

Shandong Provincial Key Laboratory of Precision Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, China. Electronic address:

Bone marrow stromal cells (BMSCs) are vital for preventing chemotherapy induced apoptosis of multiple myeloma (MM), but roles and machinery in other forms of cell death have not been well elucidated. Here, using an in vitro BMSC-MM interacting model, we observed BMSCs protected MM cells from labile iron pool (LIP) and reactive oxygen species (ROS) triggered ferroptosis by elevating glutathione peroxidase 4 (GPX4). Mechanistically, direct interaction with BMSCs upregulated the expression of SUMO-specific protease 3 (SENP3) in MM cells through CD40/CD40L signaling pathway, and SENP3 de-conjugated SUMO2 at lysine 75 residue to stabilize GPX4 protein, thereby consuming ROS to obviate ferroptosis in MM cells from the Vk∗MYC mouse model, as well as in CD138B220 cells separated from the Cd40l;Prx1 mice (CD40-CKO) and Sumo2 knock out (SUMO2-KO) mice.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!