The regulation of cell signaling pathways and the reconstruction of genetic circuits are important aspects of bioengineering research. Both of these goals require molecular devices to transmit information from an input biomacromolecule to the desired outputs. Here, we show that an RNA-protein (RNP)-containing L7Ae-kink-turn interaction can be used to construct translational regulators under control of an input protein that regulates the expression of desired output proteins. We built a system in which L7Ae, an archaeal ribosomal protein, regulates the translation of a designed mRNA in vitro and in human cells. The translational regulator composed of the RNP might provide new therapeutic strategies based on the detection, repair or rewiring of intrinsic cellular defects, and it may also serve as an invaluable tool for the dissection of the behavior of complex, higher-order circuits in the cell.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/nchembio.273 | DOI Listing |
Allergol Immunopathol (Madr)
January 2025
Geriatric Department, Suzhou Hospital of Integrated Traditional Chinese and Western Medicine, Suzhou City, Jiangsu Province, China;
Chronic obstructive pulmonary disease (COPD) is characterized by chronic inflammation, airway obstruction, and lung damage, often triggered by cigarette smoke. Dysregulated autophagy and inflammation are key contributors to its progression. Although double-stranded RNA-binding protein Staufen homolog 1 (STAU1), a multifunctional protein primarily involved in mRNA transport and localization, is identified as a potential biomarker, its role in COPD pathogenesis remains unclear.
View Article and Find Full Text PDFBioinformatics
January 2025
Institute for Computational Systems Biology, Universität Hamburg, Hamburg, 22761, Germany.
Motivation: Transcription factors (TFs) are DNA-binding proteins that regulate gene expression. Traditional methods predict a protein as a TF if the protein contains any DNA-binding domains (DBDs) of known TFs. However, this approach fails to identify a novel TF that does not contain any known DBDs.
View Article and Find Full Text PDFBioinformatics
January 2025
Department of Computer Science, City University of Hong Kong, Hong Kong, China.
Motivation: Proteoforms are the different forms of a proteins generated from the genome with various sequence variations, splice isoforms, and post-translational modifications. Proteoforms regulate protein structures and functions. A single protein can have multiple proteoforms due to different modification sites.
View Article and Find Full Text PDFElife
January 2025
Eikon Therapeutics Inc, Hayward, United States.
The regulation of cell physiology depends largely upon interactions of functionally distinct proteins and cellular components. These interactions may be transient or long-lived, but often affect protein motion. Measurement of protein dynamics within a cellular environment, particularly while perturbing protein function with small molecules, may enable dissection of key interactions and facilitate drug discovery; however, current approaches are limited by throughput with respect to data acquisition and analysis.
View Article and Find Full Text PDFInvest Ophthalmol Vis Sci
January 2025
State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, China.
Purpose: Protein arginine methyltransferase 1 (PRMT1) is an integral constituent of numerous cellular processes. However, its role in corneal epithelial wound healing (CEWH) remains unclear. This study investigates the impact of PRMT1 on cellular mechanisms underlying corneal epithelial repair and its potential to improve wound healing outcomes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!