The US3 gene product of bovine herpesvirus-1 (BoHV-1) is a protein kinase that is expressed early during infection and capable of autophosphorylation. By examining differentially labelled US3 moieties by co-immunoprecipitation, we demonstrated that the protein kinase interacts with itself in vitro, which supports autophosphorylation by US3. Based on its homology to other serine/threonine protein kinases, we defined two highly conserved lysines in US3, at position 195 within the ATP-binding pocket and at position 282 within the catalytic loop; altering either residue resulted in kinase-dead mutants, demonstrating that these two residues are critical for the catalytic activity of BoHV-1 US3. During immunoprecipitation experiments, US3 interacted weakly with VP22, another tegument protein of BoHV-1. Furthermore, VP22 co-localized with US3 inside the nucleus in BoHV-1-infected cells. In vitro kinase assays demonstrated that VP22 is phosphorylated not only by US3, but also by the cellular casein kinase 2 (CK2) protein. The selective CK2 protein kinase inhibitor, 2-dimethylamino-4,5,6,7-tetrabromo-1H-benzimidazole (DMAT) and the less specific CK2 inhibitor Kenpaullone reduced VP22 phosphorylation, while CK1, protein kinase C or protein kinase A inhibitors did not affect phosphorylation. When US3 was included with VP22 in the kinase assay in the presence of DMAT, a low level of VP22 phosphorylation was observed. These data demonstrate that BoHV-1 VP22 interacts with both CK2 and US3, and that CK2 is the major kinase phosphorylating VP22, with US3 playing a minor role.

Download full-text PDF

Source
http://dx.doi.org/10.1099/vir.0.016600-0DOI Listing

Publication Analysis

Top Keywords

protein kinase
24
us3
12
kinase
10
protein
9
vp22
9
bovine herpesvirus-1
8
vp22 us3
8
bohv-1 vp22
8
ck2 protein
8
vp22 phosphorylation
8

Similar Publications

Understanding the genetic basis of drought tolerance in safflower (Carthamus tinctorius L.) is essential for developing resilient varieties. In this study, we performed a genome-wide association study (GWAS) using DArTseq markers to identify marker-trait associations (MTAs) linked to drought tolerance across 90 globally diverse safflower genotypes.

View Article and Find Full Text PDF

Yu-Ping-Feng-San (YPF) is a famous classical Chinese medicine formula known for its ability to boost immunity. YPF has been applied to enhance the immune status of tumor patients in clinical practice. However, there is still a lack of research on its immune regulatory effects and mechanisms in the tumor microenvironment.

View Article and Find Full Text PDF

Resolvin D1 (RvD1) is an endogenous anti-inflammatory mediator that modulates the inflammatory response and promotes inflammation resolution. RvD1 has demonstrated neuroprotective effects in various central nervous system contexts; however, its role in the pathophysiological processes of intracerebral hemorrhage (ICH) and the potential protective mechanisms when combined with exercise rehabilitation remain unclear. A mouse model of ICH was established using collagenase, and treatment with RvD1 combined with three weeks of exercise rehabilitation significantly improved neurological deficits, muscle strength, learning, and memory in ICH mice while reducing anxiety-like behavior.

View Article and Find Full Text PDF

PLK1 overexpression suppresses homologous recombination and confers cellular sensitivity to PARP inhibition.

Sci Rep

December 2024

Department of Frontier Medicine, Institute of Medical Science, Graduate School of Medicine, St. Marianna University, Kawasaki, 2168511, Japan.

The overexpression of Polo-like kinase 1 (PLK1) is associated with poor clinical outcomes in various malignancies, making it an attractive target for anticancer therapies. Although recent studies suggest PLK1's involvement in homologous recombination (HR), the impact of its overexpression on HR remains unclear. In this study, we investigated the effect of PLK1 overexpression on HR using bioinformatics and experimental approaches.

View Article and Find Full Text PDF

To investigate CHD1L's impacts and molecular processes in hypoxic cutaneous squamous cell carcinoma. Monoclonal proliferation assays and CCK-8 were used to detect the proliferation capacity of A431 cells and Colon16 cells; wound healing experiments and Transwell assays were used to examine the migration and invasion capacity of A431 cells and Colon16 cells; angiogenesis experiments were conducted to assess the influence of A431 cells on angiogenesis; a nude mouse tumor xenograft experiment and HE staining were utilized to evaluate the impact of CHD1L on the progression of cutaneous squamous cell carcinoma; western blot analysis was performed to detect the expression of p-PI3K, p-AKT, and PD-L1 in A431 cells, as well as CD9, TSG101, PD-L1 in exosomes, and CD206, Arginase-1, iNOS, IL-1β, p-AKT, p-mTOR, VEGF, COX-2, MMP2, MMP9, p-ERK1/2 in tumor-associated macrophages. Under hypoxic conditions, CHD1L promoted the proliferation, migration, invasion, and angiogenesis of cutaneous squamous cell carcinoma.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!