Human gammaherpesviruses, Epstein-Barr virus, and human herpesvirus 8/Kaposi's sarcoma-associated herpesvirus are important pathogens associated with diseases, including lymphomas and other malignancies. Murine gammaherpesvirus 68 (MHV-68) is used as an experimental model system to study the host immune control of infection and explore novel vaccine strategies based on latency-deficient live viruses. We studied the properties and the potential of a recombinant MHV-68 (AC-RTA) in which the genes required for persistent infection were replaced by a constitutively expressed viral transcription activator, RTA, which dictates the virus to lytic replication. After intranasal infection of mice, replication of AC-RTA in the lung was attenuated, and no AC-RTA virus or viral DNA was detected in the isolated splenocytes, indicating a lack of latency in the spleen. Infection of the AC-RTA virus elicited both cellular immune responses and virus-specific IgG at a level comparable to that elicited by infection of the wild-type virus. Importantly, vaccination of AC-RTA was able to protect mice against subsequent challenge by the wild-type MHV-68. AC-RTA provides a vaccine strategy for preventing infection of human gammaherpesviruses. Furthermore, our results suggest that immunity to the major latent antigens is not required for protection.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2820913PMC
http://dx.doi.org/10.1128/JVI.01543-09DOI Listing

Publication Analysis

Top Keywords

murine gammaherpesvirus
8
human gammaherpesviruses
8
mhv-68 ac-rta
8
ac-rta virus
8
infection
7
ac-rta
6
virus
5
induction protective
4
protective immunity
4
immunity murine
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!