Using a standing wave sonochemical reactor (SWSR), the influences of parameters of ultrasonic power input, sonication time, sonication temperature and the amount of propanol (which generates the reducing radicals) were systemically investigated to ascertain and optimize the best conditions for the sonochemical reduction of Pt from its precursor hexachloroplatinic acid and then its deposition on rutile TiO(2) (platinization of rutile titania) catalysts. Catalytic activity of the prepared platinized catalysts was tested in the reaction of methyl orange degradation. The results of photocatalytic activity study in the degradation of methyl orange further demonstrate that sonochemically as-prepared Pt/TiO(2) catalysts show a pronounced increase ( approximately 2 times) in photodegradation, even with a deposition of small amounts of platinum (1.4wt.%), as compared to the unsupported or naked rutile titania. Although there are various parameters that influence the sonochemical platinization of rutile titania, the present optimization results clearly indicate that the best photocatalytic degradation of methyl orange can be obtained when the experimental conditions of the preparation were with an input power of 50W, an initial hexachloroplatinic acid volume of 70ml (which results into 1.4wt.% Pt on TiO(2)), sonication time of 90min, 0.18g of propanol and a temperature of 10 degrees C were adopted. The method of ultrasound application to prepare metal supported semiconductors has many advantages such as convenience, safety and high efficiency. Furthermore, it is hopeful that this optimization study can also be extended to the generation of similar metal supported semiconductors.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ultsonch.2009.11.013 | DOI Listing |
Nanomaterials (Basel)
December 2024
Department of Biomedical Engineering, National Yang Ming Chiao Tung University, Taipei 112, Taiwan.
Oral squamous-cell carcinoma (OSCC) poses significant treatment challenges due to its high recurrence rates and the limitations of current therapies. Titanium dioxide (TiO) nanoparticles are promising radiosensitizers, while bacterial outer membrane vesicles (OMVs) are known for their immunomodulatory properties. This study investigates the potential of OMV-encapsulated TiO nanoparticles (TiO@OMV) to combine these effects for improved OSCC treatment.
View Article and Find Full Text PDFNanomaterials (Basel)
December 2024
Division of Biochemical Toxicity, FDA/National Center for Toxicological Research, Jefferson, AR 72079, USA.
The safety of titanium dioxide (TiO), widely used in foods and personal care products, has been of ongoing concern. Significant toxicity of TiO has been reported, suggesting a risk to human health. To evaluate its potential epigenotoxicity, the effect of exposure to a TiO product to which humans could be exposed on DNA methylation, a primary epigenetic mechanism, was investigated using two human cell lines (Caco-2 (colorectal) and HepG2 (liver)) relevant to human exposure.
View Article and Find Full Text PDFNanomaterials (Basel)
December 2024
Fort Hare Institute of Technology, University of Fort Hare, Private Bag X1314, Alice 5700, Eastern Cape, South Africa.
Energy generation and storage are critical challenges for developing economies due to rising populations and limited access to clean energy resources. Fossil fuels, commonly used for energy production, are costly and contribute to environmental pollution through greenhouse gas emissions. Quantum dot-sensitized solar cells (QDSSCs) offer a promising alternative due to their stability, low cost, and high-power conversion efficiency (PCE) compared to other third-generation solar cells.
View Article and Find Full Text PDFMetabolites
December 2024
Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China.
Background: In recent years, titanium dioxide (TiO) nanoparticles (NPs) have been widely used in various industries due to their favorable chemical properties, and their contamination of the environment has attracted much attention, especially to aquatic animals.
Methods: Therefore, we assessed the impact of TiO NPs (5 mg/L) on the marine bivalve, pearl oyster (), especially gill metabolism. Pearl oysters were exposed to seawater containing 5 mg/L TiO NPs for 14 days, followed by 7 days of recovery in untreated seawater.
J Colloid Interface Sci
December 2024
Key Laboratory for Molecular Enzymology and Engineering, Ministry of Education, School of Life Sciences, Jilin University, Changchun, Jilin 130012, China. Electronic address:
The spontaneous adsorption of proteins onto nanoparticles, known as the protein corona, provides a unique perspective for designing protein-sensing biosensors. This study proposes a tailored protein corona method mediated by Tween-20 and develops a reverse-capture approach for protein quantification assays. The protein-coated microplate captures titanium dioxide nanosheets (TiO-NS) in a phosphate buffer containing Tween-20 and generates fluorescence signals via the photocatalytic reduction of resazurin to resorufin, thereby indicating the amount of protein.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!