AI Article Synopsis

  • Recombination of homologous chromosomes is crucial for the proper segregation of chromosomes during meiosis.
  • Different organisms use various strategies for this process, which involves two key steps: aligning homologous chromosomes and recognizing their partners.
  • The text reviews the mechanisms involved in both the alignment and recognition phases during meiosis.

Article Abstract

Recombination of homologous chromosomes is essential for correct reductional segregation of homologous chromosomes, which characterizes meiosis. To accomplish homologous recombination, chromosomes must find their homologous partners and pair with them within the spatial constraints of the nucleus. Although various mechanisms have developed in different organisms, two major steps are involved in the process of pairing: first, alignment of homologous chromosomes to bring them close to each other for recognition; and second, recognition of the homologous partner of each chromosome so that they can form an intimate pair. Here, we discuss the various mechanisms used for alignment and recognition of homologous chromosomes in meiosis.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1742-4658.2009.07501.xDOI Listing

Publication Analysis

Top Keywords

homologous chromosomes
20
recognition homologous
12
alignment recognition
8
homologous
8
chromosomes meiosis
8
chromosomes
6
meiosis
4
meiosis postmeiotic
4
postmeiotic events
4
events alignment
4

Similar Publications

Predictive modelling of acute Promyelocytic leukaemia resistance to retinoic acid therapy.

Brief Bioinform

November 2024

Department of Biology, École Normale Supérieure, 46 rue d'Ulm, 75005 Paris, France.

Acute Promyelocytic Leukaemia (APL) arises from an aberrant chromosomal translocation involving the Retinoic Acid Receptor Alpha (RARA) gene, predominantly with the Promyelocytic Leukaemia (PML) or Promyelocytic Leukaemia Zinc Finger (PLZF) genes. The resulting oncoproteins block the haematopoietic differentiation program promoting aberrant proliferative promyelocytes. Retinoic Acid (RA) therapy is successful in most of the PML::RARA patients, while PLZF::RARA patients frequently become resistant and relapse.

View Article and Find Full Text PDF

The synaptonemal complex (SC) is a protein-rich structure essential for meiotic recombination and faithful chromosome segregation. Acting like a zipper to paired homologous chromosomes during early prophase I, the complex is a symmetrical structure where central elements are connected on two sides by the transverse filaments to the chromatin-anchoring lateral elements. Despite being found in most major eukaryotic taxa implying a deeply conserved evolutionary origin, several components of the complex exhibit unusually high rates of sequence turnover.

View Article and Find Full Text PDF

Oligo-FISH barcode chromosome identification system provides novel insights into the natural chromosome aberrations propensity in the autotetraploid cultivated alfalfa.

Hortic Res

January 2025

Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, Key Laboratory of Oasis Town and Mountain-basin System Ecology of Xinjiang Production and Construction Corps, College of Life Sciences, Shihezi University, Shihezi 832003, China.

Alfalfa is one of the most economically valuable forage crops in the world. However, molecular cytogenetic studies in alfalfa lag far behind other cash crops and have reached a bottleneck. Here, we developed a novel chromosome identification system by designing 21 oligo probes in specific regions of each chromosome, which can be used as a barcode to simultaneously distinguish all chromosomes in a cell.

View Article and Find Full Text PDF

Extensive homologous recombination safeguards oocyte genome integrity in mammals.

Nucleic Acids Res

January 2025

MOE Key Laboratory of Biosystems Homeostasis and Protection, College of Life Sciences, Zhejiang University, No.866 Yuhangtang Road, 310058, Hangzhou, China.

Meiosis in mammalian oocytes is interrupted by a prolonged arrest at the germinal vesicle stage, during which oocytes have to repair DNA lesions to ensure genome integrity or otherwise undergo apoptosis. The FIRRM/FLIP-FIGNL1 complex dissociates RAD51 from the joint DNA molecules in both homologous recombination (HR) and DNA replication. However, as a type of non-meiotic, non-replicative cells, whether this RAD51-dismantling mechanism regulates genome integrity in oocytes remains elusive.

View Article and Find Full Text PDF

The epigenetic cofactor ENL (eleven-nineteen-leukemia) and the acetyltransferase MOZ (monocytic leukemia zinc finger) have vital roles in transcriptional regulation and are implicated in aggressive forms of leukemia. Here, we describe the mechanistic basis for the intertwined association of ENL and MOZ. Genomic analysis shows that ENL and MOZ co-occupy active promoters and that MOZ recruits ENL to its gene targets.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!