AI Article Synopsis

  • The neutral compound NCCCCCN can be produced in a mass spectrometer through a series of charge stripping reactions that start with NCCCCH(OEt)(CN) and involve hydrocarbon interactions.
  • A comparison of neutralization/reionization and charge reversal spectra shows that some neutral NCCCCCN molecules are energized, leading them to rearrange into an isomer that loses carbon.
  • An advanced theoretical study reveals that the triplet form of NCCCCCN is the most stable state, requires special molecular orbital theory for accurate description, and identifies key reaction pathways for carbon loss, primarily through a rearrangement process.

Article Abstract

Neutral NCCCCCN may be prepared in a collision cell of a VG ZAB 2HF mass spectrometer by charge stripping of (NCCCCCN)(*-), formed in the ion source by the process NCCCCH(OEt)(CN) + HO(-) --> H(2)O + NCCCC(-)(OEt)(CN) --> (NCCCCCN)(*-) + EtO(*). A comparison of the neutralization/reionization ((-)NR(+)) and charge reversal ((-)CR(+)) spectra of (NCCCCCN)(*-) indicate that some neutrals NCCCCCN are energized and rearrange to an isomer which decomposes by loss of carbon. An ab initio study at the CCSD(T)/cc-pVTZ//B3LYP/6-311+G(3df) level of theory indicates that (i) triplet NCCCCCN is the ground state with a T/S energy gap of -14.9 kcal mol(-1); (ii) the structures of triplet and singlet NCCCCCN need to be described by molecular obital theory, and a simple valence bond approach cannot be used for this system; and (iii) there are several possible routes by which an energized neutral may lose carbon, but the major route involves the triplet nitrile to isonitrile rearrangement NCCCCCN --> CNCCCCN --> NCCCCN + C.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jp909911bDOI Listing

Publication Analysis

Top Keywords

lose carbon
8
ncccccn
5
energized ncccccn
4
ncccccn lose
4
carbon gas
4
gas phase?
4
phase? joint
4
joint experimental
4
experimental theoretical
4
theoretical study
4

Similar Publications

Deep photocatalytic NO oxidation on ZnTi-LDH: Pivotal role of surface hydroxyls dynamic evolution.

J Hazard Mater

January 2025

Research Center for Carbon-Neutral Environmental & Energy Technology, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 611731, China.

Surface defect engineering has been regarded as an appealing strategy to improve photocatalytic performance, but defects are susceptible to inactivation and thus lose their function as active sites. In this study, we successfully tailored and identified the dynamic evolution of surface hydroxyl defects over ZnTi-layered double hydroxide (ZnTi-LDH) photocatalyst. The enrichment of surface hydroxyl electrons and the dynamic circulation of hydroxyl defects result in enhanced separation and transport capabilities of photogenerated carriers, thereby ensuring the perpetual activation of small molecules into •O and •OH.

View Article and Find Full Text PDF

Recycling end-of-life wind turbines poses a significant challenge due to the increasing number of turbines going out of use. After many years of operation, turbines lose their functional properties, generating a substantial amount of composite waste that requires efficient and environmentally friendly processing methods. Wind turbine blades, in particular, are a problematic component in the recycling process due to their complex material composition.

View Article and Find Full Text PDF

Adapting Methods for Isolation and Enumeration of Microplastics to Quantify Tire Road Wear Particles with Confirmation by Pyrolysis GC-MS.

Environ Sci Technol

January 2025

U.S. Environmental Protection Agency, E205-02, Research Triangle Park, P.O. Box 12055, Durham, North Carolina 27711, United States.

The complex, varied composition (i.e., rubbers/elastomers, carbon black, fillers, additives, and embedded road materials) and wide density range of tire road wear particles (TRWPs) present challenges for their isolation and identification from environmental matrices.

View Article and Find Full Text PDF

The cratonic crust contains abundant mineral deposits of metals such as gold, copper and rare earths and is underlain by a thick mantle lithosphere rich in the volatiles carbon, sulfur and water. Although volatiles are known to be key components in metallogenesis, how and where they are distributed in the cratonic lithosphere mantle and their role in the initial enrichment of metals have not been sufficiently explored. Here we compile sulfur and copper contents of global cratonic peridotites, identifying sulfide-rich and copper-rich continental roots at depths of 160-190 km at cratonic margins.

View Article and Find Full Text PDF

The application of nanocomposites based on polyacrylamide hydrogels as well as silica nanoparticles in various tasks related to the petroleum industry has been rapidly developing in the last 10-15 years. Analysis of the literature has shown that the introduction of nanoparticles into hydrogels significantly increases their structural and mechanical characteristics and improves their thermal stability. Nanocomposites based on hydrogels are used in different technological processes of oil production: for conformance control, water shutoff in production wells, and well killing with loss circulation control.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!