In this report, earlier findings of age-related changes in brain morphology on magnetic resonance (MR) images are extended to include measurements of individual cerebral grey matter structures and an index of white matter degeneration. Volumes of caudate, lenticular, and diencephalic structures are estimated, as are grey matter volumes in eight separate cortical regions. Results suggest that between 30 and 79 years significant decreases occur in the volume of the caudate nucleus, in anterior diencephalic structures, and in the grey matter of most cortical regions. The data suggest that the volumes of the thalamus and the anterior cingulate cortex may be unchanged. Among those cortical regions found to be affected in aging, some evidence is present for greater change in association cortices and mesial temporal lobe structures. There are also dramatic age-related changes in the white matter, manifest as lengthened T2 values on MR images.

Download full-text PDF

Source
http://dx.doi.org/10.1016/0006-3223(91)90210-dDOI Listing

Publication Analysis

Top Keywords

age-related changes
12
grey matter
12
cortical regions
12
white matter
8
diencephalic structures
8
matter
5
cerebral structure
4
structure mri
4
mri localization
4
localization age-related
4

Similar Publications

Static and dynamic connectivity structure of white-matter functional networks across the adult lifespan.

Prog Neuropsychopharmacol Biol Psychiatry

January 2025

MOE-LCSM, School of Mathematics and Statistics, Hunan Normal University, Changsha 410006, PR China; Key Laboratory of Applied Statistics and Data Science, Hunan Normal University, College of Hunan Province, Changsha 410006, PR China. Electronic address:

Aging of the human brain involves intricate biological processes, resulting in complex changes in structure and function. While the effects of aging on gray matter (GM) connectivity are extensively studied, white matter (WM) functional changes have received comparatively less attention. This study examines age-related WM functional dynamics using resting-state fMRI across the adult lifespan.

View Article and Find Full Text PDF

Characterizing the Microstructural Transition at the Gray Matter-White Matter Interface: Implementation and Demonstration of Age-Associated Differences.

Neuroimage

January 2025

Department of Radiology, Columbia University Irving Medical Center, New York, NY; Department of Biomedical Engineering, Columbia University, New York, NY. Electronic address:

Background: The cortical gray matter-white matter interface (GWI) is a natural transition zone where the composition of brain tissue abruptly changes and is a location for pathologic change in brain disorders. While diffusion magnetic resonance imaging (dMRI) is a reliable and well-established technique to characterize brain microstructure, the GWI is difficult to assess with dMRI due to partial volume effects and is normally excluded from such studies.

Methods: In this study, we introduce an approach to characterize the dMRI microstructural profile across the GWI and to assess the sharpness of the microstructural transition from cortical gray matter (GM) to white matter (WM).

View Article and Find Full Text PDF

Background: Non-human primates (NPHs), such as rhesus macaques, cynomolgus monkeys, and Assamese macaques, play a crucial role in biomedical research. However, baseline cytokine and electrolyte data for these three species, particularly data stratified by age and sex, are limited. Therefore, the aim of this study was to establish and analyze age- and sex-specific cytokine and electrolyte profiles in these three species.

View Article and Find Full Text PDF

Limbic predominant age-related TDP-43 encephalopathy neuropathologic change (LATE-NC) is highly prevalent in late life and a common co-pathology with Alzheimer's disease neuropathologic change (ADNC). LATE-NC is a slowly progressive, amnestic clinical syndrome. Alternatively, when present with ADNC, LATE-NC is associated with a more rapid course.

View Article and Find Full Text PDF

Effect of Sex and Age on Knee Strength in Young Athletes: A Systematic Review and Meta-analysis.

Int J Exerc Sci

December 2024

John G. Rangos, Sr. School of Health Sciences, Duquesne University, Pittsburgh, Pennsylvania, USA.

The purpose was to summarize the studies examining knee strength in young athletes and provide valuable insights into the magnitude of changes in knee flexion and extension strength during the transition from pre-puberty to puberty among male and female athletes. The literature search was conducted through Cochrane Library, Embase, PubMed, Web of Science. Cohen's effect size (ES) and 95% confidence intervals (CIs) were computed using a random effects model.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!