Synovial fluid (SF) contains lubricant macromolecules, hyaluronan (HA), and proteoglycan 4 (PRG4). The synovium not only contributes lubricants to SF through secretion by synoviocyte lining cells, but also concentrates lubricants in SF due to its semi-permeable nature. A membrane that recapitulates these synovium functions may be useful in a bioreactor system for generating a bioengineered fluid (BF) similar to native SF. The objectives were to analyze expanded polytetrafluoroethylene membranes with pore sizes of 50 nm, 90 nm, 170 nm, and 3 microm in terms of (1) HA and PRG4 secretion rates by adherent synoviocytes, and (2) the extent of HA and PRG4 retention with or without synoviocytes adherent on the membrane. Experiment 1: Synoviocytes were cultured on tissue culture (TC) plastic or membranes +/- IL-1beta + TGF-beta1 + TNF-alpha, a cytokine combination that stimulates lubricant synthesis. HA and PRG4 secretion rates were assessed by analysis of medium. Experiment 2: Bioreactors were fabricated to provide a BF compartment enclosed by membranes +/- adherent synoviocytes, and an external compartment of nutrient fluid (NF). A solution with HA (1 mg/mL, MW ranging from 30 to 4,000 kDa) or PRG4 (50 microg/mL) was added to the BF compartment, and HA and PRG4 loss into the NF compartment after 2, 8, and 24 h was determined. Lubricant loss kinetics were analyzed to estimate membrane permeability. Experiment 1: Cytokine-regulated HA and PRG4 secretion rates on membranes were comparable to those on TC plastic. Experiment 2: Transport of HA and PRG4 across membranes was lowest with 50 nm membranes and highest with 3 microm membranes, and transport of high MW HA was decreased by adherent synoviocytes (for 50 and 90 nm membranes). The permeability to HA mixtures for 50 nm membranes was approximately 20 x 10(-8) cm/s (- cells) and approximately 5 x 10(-8) cm/s (+ cells), for 90 nm membranes was approximately 35 x 10(-8) cm/s (- cells) and approximately 19 x 10(-8) cm/s (+ cells), for 170 nm membranes was approximately 74 x 10(-8) cm/s (+/- cells), and for 3 microm membranes was approximately 139 x 10(-8) cm/s (+/- cells). The permeability of 450 kDa HA was approximately 40x lower than that of 30 kDa HA for 50 nm membranes, but only approximately 2.5x lower for 3 microm membranes. The permeability of 4,000 kDa HA was approximately 250x lower than that of 30 kDa HA for 50 nm membranes, but only approximately 4x lower for 3 microm membranes. The permeability for PRG4 was approximately 4 x 10(-8) cm/s for 50 nm membranes, approximately 48 x 10(-8) cm/s for 90 nm membranes, approximately 144 x 10(-8) cm/s for 170 nm membranes, and approximately 336 x 10(-8) cm/s for 3 microm membranes. The associated loss across membranes after 24 h ranged from 3% to 92% for HA, and from 3% to 93% for PRG4. These results suggest that semi-permeable membranes may be used in a bioreactor system to modulate lubricant retention in a bioengineered SF, and that synoviocytes adherent on the membranes may serve as both a lubricant source and a barrier for lubricant transport.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2913685PMC
http://dx.doi.org/10.1002/bit.22645DOI Listing

Publication Analysis

Top Keywords

10-8 cm/s
40
membranes
23
microm membranes
20
membranes 10-8
16
cm/s cells
16
prg4 secretion
12
secretion rates
12
adherent synoviocytes
12
membranes permeability
12
prg4
10

Similar Publications

An innovative nanovehicle based on lipid nanocapsules (LNC) was designed to facilitate the passage of a new 5-HT receptor antagonist, namely PUC-10, through the blood-brain barrier. PUC-10 is a new synthetic -arylsulfonylindole that has demonstrated potent 5-HT receptor antagonist activity, but it exhibits poor solubility in water, which indicates limited absorption. The lipid nanocapsules designed had a nanometric size (53 nm), a monomodal distribution (PI<0.

View Article and Find Full Text PDF
Article Synopsis
  • The study examined how different steaming durations (0, 4, 8, and 12 hours) affect the structure and characteristics of polysaccharides (PCPs), particularly regarding digestion, absorption, and gut microbiota fermentation.
  • Chemical analysis revealed that longer steaming reduced carbohydrate content while increasing certain components like uronic acid and protein in the PCPs.
  • Results showed that while all PCPs were resistant to saliva digestion, they improved gastrointestinal digestibility and altered gut microbiota composition, leading to increased short-chain fatty acid production, though this declined with longer steaming times.
View Article and Find Full Text PDF

The development of alternative methods for monitoring cardiorespiratory function without restraint or surgical implantation is attracting growing interest for both ethical and scientific reasons. For this purpose, a new non-invasive jacketed telemetry tool consisting in a radio device maintained in a jacket worn by the animal was previously developed to improve cardiorespiratory monitoring. It allows simultaneous monitoring of cardiac activity by surface electrocardiagram, respiratory function by respiratory inductive plethysmography, and locomotor activity by accelerometry.

View Article and Find Full Text PDF

In this work, NiVO (NVO) and NiVO-reduced graphene oxide (NVO-rGO) are synthesized hydrothermally, and their extensive structural, morphological, and electrochemical characterizations follow subsequently. The synthetic materials' crystalline structure was confirmed by X-ray diffraction (XRD), and its unique marigold-like morphology was observed by field emission scanning electron microscopy (FESEM). The chemical states of the elements were investigated via X-ray photoelectron spectroscopy (XPS).

View Article and Find Full Text PDF

Background: Sepsis is a life-threatening organ dysfunction, and septic cardiomyopathy (SCM) may complicate the course of the disease. Infection with multidrug-resistant (MDR) pathogens has been linked with worse outcomes. This study aims to evaluate SCM in patients with infections caused by different antimicrobial-resistant phenotypes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!