Adult cardiomyocytes (CM) retain little capacity to regenerate, which motivates efforts to engineer heart tissues that can emulate the functional and mechanical properties of native myocardium. Although the effects of matrix stiffness on individual CM have been explored, less attention was devoted to studies at the monolayer and the tissue level. The purpose of this study was to characterize the influence of substrate mechanical stiffness on the heart cell phenotype and functional properties. Neonatal rat heart cells were seeded onto collagen-coated polyacrylamide (PA) substrates with Young's moduli of 3, 22, 50, and 144 kPa. Collagen-coated glass coverslips without PA represented surfaces with effectively "infinite" stiffness. The local elastic modulus of native neonatal rat heart tissue was measured to range from 4.0 to 11.4 kPa (mean value of 6.8 kPa) and for native adult rat heart tissue from 11.9 to 46.2 kPa (mean value of 25.6 kPa), motivating our choice of the above PA gel stiffness. Overall, by 120 h of cultivation, the lowest stiffness PA substrates (3 kPa) exhibited the lowest excitation threshold (ET; 3.5 +/- 0.3 V/cm), increased troponin I staining (52% positively stained area) but reduced cell density, force of contraction (0.18 +/- 0.1 mN/mm(2)), and cell elongation (aspect ratio = 1.3-1.4). Higher stiffness (144 kPa) PA substrates exhibited reduced troponin I staining (30% positively stained area), increased fibroblast density (70% positively stained area), and poor electrical excitability. Intermediate stiffness PA substrates of stiffness comparable to the native adult rat myocardium (22-50 kPa) were found to be optimal for heart cell morphology and function, with superior elongation (aspect ratio > 4.3), reasonable ET (ranging from 3.95 +/- 0.8 to 4.4 +/- 0.7 V/cm), high contractile force development (ranging from 0.52 +/- 0.2 to 1.60 +/- 0.6 mN/mm(2)), and well-developed striations, all consistent with a differentiated phenotype.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/bit.22647 | DOI Listing |
J Mol Cell Cardiol
March 2025
Voiland School of Chemical and Bioengineering, Washington State University, Pullman, WA 99163-1062, USA; Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, WA 99163-1062, USA. Electronic address:
Sarcomere length-dependent activation (LDA) is essential to engaging the Frank-Starling mechanism in the beat-to-beat regulation of cardiac output. Through LDA, the heart increases the Ca sensitivity of myocardial contraction at a longer sarcomere length, leading to an enhanced maximal force at the same level of Ca. Despite its importance in both normal and pathological states, the molecular mechanism underlying LDA, especially the origin of the sarcomere length (SL) induced increase in myofilament Casensitivity, remains elusive.
View Article and Find Full Text PDFBiomed Chromatogr
April 2025
Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China.
Ixeris sonchifolia (IS) has been demonstrated to have beneficial effects on clearing heat and detoxifying, promoting blood circulation and removing blood stasis. However, the protective effects of active fractions and the underlying mechanisms of IS against toxic heat and blood stasis syndrome (THBSS) remain unclear. This study aimed to investigate this.
View Article and Find Full Text PDFACS Nano
March 2025
School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou 511442, P. R. China.
Mesenchymal stromal cell (MSC) therapy holds great promise for treating myocardial infarction (MI). However, the inflammatory and reactive oxygen species (ROS)-rich environment in infarcted myocardium challenges MSC survival, limiting its therapeutic impact. In this study, we demonstrate that chemical modification of MSCs with anti-VCAM1 and polydopamine (PD) significantly enhances MSC survival and promotes cardiac repair.
View Article and Find Full Text PDFBasic Res Cardiol
March 2025
Cardiovascular and Metabolic Disorders Programme, Duke-NUS Medical School, 8 College Road, Singapore, Singapore.
Although many cardioprotective interventions have been shown to limit infarct size (IS), in preclinical animal studies of acute myocardial ischemia/reperfusion injury (IRI), their clinical translation to patient benefit has been largely disappointing. A major factor is the lack of rigor and reproducibility in the preclinical studies. To address this, we have established the IMproving Preclinical Assessment of Cardioprotective Therapies (IMPACT) small animal multisite acute myocardial infarction (AMI) network, with centralized randomization and blinded core laboratory IS analysis, and have validated the network using ischemic preconditioning (IPC).
View Article and Find Full Text PDFBiomed Chromatogr
April 2025
Flavour Science Research Center, College of Chemistry, Zhengzhou University, Zhengzhou, China.
Cordycepin, a natural adenosine derivative, exhibits multiple pharmacological effects on organisms. However, its distribution and metabolic characteristics have not been fully elucidated in vivo. In this study, ultra-high liquid chromatography tandem high-resolution mass spectrometry (UHPLC-HRMS/MS) was used to investigate the pharmacokinetic characteristics and effects of cordycepin on endogenous adenosine and inosine.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!