A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Vitamin C coadministration augments bisphenol A, nonylphenol, and octylphenol induced oxidative damage on kidney of rats. | LitMetric

The aim of this study was to investigate whether bisphenol A (BPA), nonylphenol (NP), and octylphenol (OP) induce oxidative stress on the kidney tissue of male rats and whether coadministration of vitamin C, an antioxidant, can prevent any possible oxidative stress. The Wistar male rats were divided into seven groups, including control, BPA, NP, OP, BPA+C, NP + C, OP +C. BPA, NP, and OP (25 mg/kg/day) was administered alone; vitamin C (60 mg/kg/day) was administered along with BPA, OP, and NP to the rats for 50 days. There was a decrease in serum concentration of blood urea nitrogen (BUN) in NP and OP groups compared with control group. Vitamin C coadministration with BPA, NP, and OP did not produce significant increase in BUN concentration in BPA +C, NP+ C, and OP + C group as compared with BPA, NP, and OP groups, respectively. The lowest serum creatinine activity and the highest lactate dehydrogenase (LDH) activity was present in kidney of BPA+C, NP+C and OP+C groups compared with BPA, NP, and OP groups. The malondialdehyde (MDA) levels were significantly higher while glutathione (GSH) levels were lower in treatment groups than controls. Furthermore, an increase was observed in MDA levels whereas a decrease was observed in GSH levels in BPA+ C, NP + C, and OP+ C groups compared with BPA, NP, and OP groups, respectively. These finding are in accordance with immunohistochemical staining of MDA and GSH. Histopathological examination of the kidneys of rats in BPA, OP, NP, BPA+ C, NP + C, and OP+ C groups revealed necrotic lesions, congestion, and mononuclear cell infiltration. In conclusion BPA, NP, and OP might induce oxidative damage in kidney of rats. In addition, coadministration of vitamin C with BPA, NP, and OP to male rats augments this damage in the kidney of male rats.

Download full-text PDF

Source
http://dx.doi.org/10.1002/tox.20556DOI Listing

Publication Analysis

Top Keywords

male rats
16
damage kidney
12
bpa
12
groups compared
12
compared bpa
12
bpa groups
12
groups
9
vitamin coadministration
8
nonylphenol octylphenol
8
oxidative damage
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!