In this study, transparent poly(vinyl alcohol) (PVA) and PVA/halloysite nanotubes (HNTs) bionanocomposite films were prepared by solution casting and glutaraldehyde (GA) crosslinking. The surface topography and chemistry of the films were characterized by atomic force microscopy (AFM) and attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy, respectively. Blending with HNTs induced changes in nanotopography and surface chemistry of PVA films. The mechanical properties of PVA were enhanced by the incorporated HNTs. The stain-induced crystallization was confirmed by DSC after tensile test. MC3T3-E1 osteoblast-like and NIH 3T3 fibroblast cells were cultured on neat PVA and PVA/HNTs films to evaluate the effects of surface nanotopography and composition on cell behavior. The observations indicated that MC3T3-E1 cell behavior strongly responded to surface nanotopography. On nanotube-dominant surface, cells exhibited a significantly higher level of adhesion than on neat PVA film, whereas neat PVA showed higher degree of osteoblast proliferation compared with PVA/HNTs. In vitro fibroblasts response demonstrated that both neat PVA and PVA/HNTs nanocomposite films were biocompatible and PVA/HNTs films favored to fibroblasts attach and growth below 7.5 wt % of HNTs incorporated. In summary, these results provided insights into understanding of PVA and PVA/HNTs bionanocomposite films in potential applications in bone tissue engineering and drug delivery systems.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/jbm.a.32656 | DOI Listing |
Polymers (Basel)
December 2024
Department of Wood Science and Technology, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000 Ljubljana, Slovenia.
This study compared the use of cellulose nanofibrils (CNF) and lignocellulose nanofibrils (LCNF) in different concentrations to reinforce the poly(vinyl alcohol) (PVA) matrix. Both nanofillers significantly improved the elastic modulus and tensile strength of PVA biocomposite films. The optimum concentration of CNF and LCNF was 6% relative to PVA, which improved the tensile strength of the final PVA biocomposite with CNF and LCNF by 53% and 39%, respectively, compared to the neat PVA film.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Department of Mechanical Engineering, Myongji University, 116 Myongji-ro, Cheoin-gu, Yongin, Gyeonggi-do 17058, Republic of Korea.
This study introduces a flexible and scalable charge-trapping intermediate layer of conjugated polymeric film comprising [PANI/PEDOT:PSS] between the [PVA/PDDA] triboelectric layer and graphene-based [PVA/GNP-PSS] electrode using the layer-by-layer (LbL) assembly method. By varying the deposition layers, the optimal coating layout was identified as 2 and 8 bilayers of intermediate and triboelectric layers, respectively. The triboelectric nanogenerator (TENG) fabricated with this optimal configuration achieved peak output voltage and current of 180 V and 9 μA, respectively, at 3 Hz and 5 N against PDMS.
View Article and Find Full Text PDFHeliyon
October 2024
Laboratory of Plastics and Rubber Technology, Department of Physical Chemistry and Materials Science, Budapest University of Technology and Economics, Műegyetem rkp. 3., H-1111, Budapest, Hungary.
Electrospun fibers prepared from water-soluble polymers (PVP, PVA, and HPMC) were loaded with pregabalin, a BCS I drug, to address its fast release and adverse effects. The drug dissolved partially (1.8-2.
View Article and Find Full Text PDFBMC Chem
July 2024
Chemical Engineering Department, Borg Al Arab Higher Institute of Engineering and Technology, Alexandria, 21933, Egypt.
Typically, hydrogels are described as three-dimensional networks of hydrophilic polymers that are able to capture a certain mass of water within their structure. Recently, hydrogels have been widely used as drawing agents in forward osmosis (FO) desalination processes. The major aim of this study is to prepare a novel semi-interpenetrating hydrogel by crosslinking sodium alginate (SA) and polyvinyl alcohol (PVA) by using the epichlorohydrin (ECH) crosslinker and polyethylene glycol (PEG) interpenetrated within the hydrogel's network as a linear polymer.
View Article and Find Full Text PDFRSC Adv
June 2024
Faculty of Materials Science and Technology, University of Science, VNU-HCM 700000 Vietnam
Silver nanoparticles (AgNPs) were loaded on deprotonated cellulose nanocrystals (CNCd) and incorporated into polyvinyl alcohol (PVA) to develop novel active food packaging films. The AgNPs were fabricated using the liquid phase chemical reduction method using the sodium borohydride reductant of AgNO. The analysis using X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), Thermogravimetric analysis (TGA), Differential scanning calorimetry (DSC), and Ultraviolet-visible spectroscopy (UV-Vis) showed that the CNCd surface had a homogeneous distribution of AgNPs with a diameter of about 100 nm.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!