Transverse spin relaxation rates of water protons in articular cartilage and tendon depend on the orientation of the tissue relative to the applied static magnetic field. This complicates the interpretation of magnetic resonance images of these tissues. At the same time, relaxation data can provide information about their organisation and microstructure. We present a theoretical analysis of the anisotropy of spin relaxation of water protons observed in fully hydrated cartilage. We demonstrate that the anisotropy of transverse relaxation is due almost entirely to intramolecular dipolar coupling modulated by a specific mode of slow molecular motion: the diffusion of water molecules in the hydration shell of a collagen fibre around the fibre, such that the molecular director remains perpendicular to the fibre. The theoretical anisotropy arising from this mechanism follows the 'magic-angle' dependence observed in magnetic-resonance measurements of cartilage and tendon and is in good agreement with the available experimental results. We discuss the implications of the theoretical findings for MRI of ordered collagenous tissues.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/nbm.1466 | DOI Listing |
Background: Magnetization transfer (MT) MRI is sensitive to the presence of macromolecules, including amyloid-beta, and previous work suggests that it may be useful for discriminating patients with Alzheimer's disease (AD) from healthy controls. In this study, we investigated if quantitative MT (qMT) is capable of detecting the amyloid concentration in a preclinical cohort.
Method: We recruited 14 subjects with a clinical dementia rating of 0 from NYU's ADRC cohort (7 male, mean age 74, 6 amyloid-negative).
Background: White matter lesions (WMLs) are common with aging and are prevalent in AD, but the underlying physiology as well as associations with conventional vascular risk factors are not yet fully understood. In this study, we investigated the relationship between vascular risk factors and microvascular physiology (i.e.
View Article and Find Full Text PDFBackground: Cerebral amyloid angiopathy (CAA) has been recognized as one of the morphologic hallmarks of Alzheimer disease (AD). The development of new AD drugs has brought unforeseen challenges that manifest as amyloid-related imaging abnormalities (ARIA) appearing as vasogenic edema/effusion (ARIA-E) and cerebral microhemorrhage/hemosiderosis (ARIA-H). The prominence of CAA pathology in aged squirrel monkeys (SQMs), a New World non-human primate model, underlines the importance of advancing this unique species for use in AD and dementia research.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
School of Public Health, the Second Affiliated Hospital of School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.
Background: Oxygen extraction fraction (OEF) reflects the equilibrium between brain oxygen delivery and consumption, potentially serving as an early Alzheimer's disease (AD) biomarker. Previous investigations were mainly conducted in cognitive impairment and AD population. However, the potential neuropathway connecting cardiometabolic condition, OEF, and dementia-related brain structural changes, especially in early cognitive decline, is unclear.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
NYU Grossman School of Medicine, New York, NY, USA.
Background: Magnetization transfer (MT) MRI is sensitive to the presence of macromolecules, including amyloid-beta, and previous work suggests that it may be useful for discriminating patients with Alzheimer's disease (AD) from healthy controls. In this study, we investigated if quantitative MT (qMT) is capable of detecting the amyloid concentration in a preclinical cohort.
Method: We recruited 14 subjects with a clinical dementia rating of 0 from NYU's ADRC cohort (7 male, mean age 74, 6 amyloid-negative).
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!