Genetically engineered mouse models in drug discovery research.

Methods Mol Biol

Genetically Modified Models Center of Emphasis, Pfizer Global Research and Development, Pfizer Inc., Groton, CT, USA.

Published: February 2010

Genetically modified mouse models have been proven to be a powerful tool in drug discovery. The ability to genetically modify the mouse genome by removing or replacing a specific gene has enhanced our ability to identify and validate target genes of interest. In addition, many human diseases can be mimicked in the mouse and signaling pathways have been shown to be conserved. In spite of these advantages the technology has limitations. In transgenic animals there may be significant heterogeneity among different founders. In knock-out animals the predicted phenotypes are not always readily observed and occasionally a completely novel and unexpected phenotype emerges. To address the latter and ensure that a deep knowledge of the target of interest is obtained, we have developed a comprehensive phenotyping program which has identified novel phenotypes as well as any potential safety concerns which may be associated with a particular target. Finally we continue to explore innovative technologies as they become available such as RNAi for temporal and spatial gene knock-down and humanized models that may better simulate human disease states.

Download full-text PDF

Source
http://dx.doi.org/10.1007/978-1-60761-058-8_3DOI Listing

Publication Analysis

Top Keywords

mouse models
8
drug discovery
8
genetically engineered
4
mouse
4
engineered mouse
4
models drug
4
discovery genetically
4
genetically modified
4
modified mouse
4
models proven
4

Similar Publications

Advances in RNA editing in hematopoiesis and associated malignancies.

Blood

January 2025

State Key Laboratory of Experimental Hematology, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College; Center for Stem Cell Medicine,, Tianjin, China.

Adenosine-to-inosine (A-to-I) RNA editing is a prevalent RNA modification essential for cell survival. The process is catalyzed by the Adenosine Deaminase Acting on RNA (ADAR) enzyme family that converts adenosines in double-stranded RNAs (dsRNAs) into inosines, which are read as guanosines during translation. Deep sequencing has helped to reveal that A-to-I editing occurs across various types of RNAs to affect their functions.

View Article and Find Full Text PDF

Antibodies to β2-glycoprotein I (β2GPI) cause thrombosis in antiphospholipid syndrome, however the role of β2GPI in coagulation in vivo is not understood. To address this issue, we developed β2GPI-deficient mice (Apoh-/-) by deleting exon 2 and 3 of Apoh using CRISPR/Cas9 and compared the development of thrombosis in wild-type (WT) and Apoh-/- mice using rose bengal and FeCl3-induced carotid thrombosis, laser-induced cremaster arteriolar injury, and inferior vena cava (IVC) stasis models. We also compared tail bleeding times and activation of platelets from WT and Apoh-/- mice in the absence and presence of β2GPI.

View Article and Find Full Text PDF

Background: Acute ischemic stroke treatment typically involves tissue-type plasminogen activator (tPA) or tenecteplase, but about 50% of patients do not achieve successful reperfusion. The causes of tPA resistance, influenced by thrombus composition and timing, are not fully clear. Neutrophil extracellular traps (NETs), associated with poor outcomes and reperfusion resistance, contribute to thrombosis.

View Article and Find Full Text PDF

Approximately one in every 800 children is born with the severe aneuploid condition of Down Syndrome, a trisomy of chromosome 21. Low blood pressure (hypotension) is a common condition associated with DS and can have a significant impact on exercise tolerance and quality of life. Little is known about the factors driving this hypotensive phenotype and therefore therapeutic interventions are limited.

View Article and Find Full Text PDF

METTL3, a key enzyme in N6-methyladenosine (m6A) modification, plays a crucial role in the progression of renal fibrosis, particularly in chronic active renal allograft rejection (CAR). This study explored the mechanisms by which METTL3 promotes renal allograft fibrosis, focusing on its role in the macrophage-to-myofibroblast transition (MMT). Using a comprehensive experimental approach, including TGF-β1-induced MMT cell models, METTL3 conditional knockout (METTL3 KO) mice, and renal biopsy samples from patients with CAR, the study investigates the involvement of METTL3/Smad3 axis in driving MMT and renal fibrosis during the episodes of CAR.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!