Interleukin-15 (IL-15) is a cytokine produced in the normal brain that acts on its specific receptor IL-15Ralpha and co-receptors IL-2Rbeta and IL-2Rgamma in neuronal cells. The functions of the cerebral IL-15 system, however, are not yet clear. To test the hypothesis that IL-15Ralpha regulates metabolic activity and body temperature, we quantified the specific metabolic phenotype of IL-15Ralpha knockout mice. These normal-appearing mice were leaner with lower fat composition. During the entire circadian cycle, the knockout mice had a significantly higher acrophase in locomotor activity and heat dissipation. During the light phase, there was significantly greater food intake, oxygen consumption, and carbon dioxide production. The difference in the dark and light phases suggests that IL-15Ralpha participates in circadian rhythm regulation. The higher oxygen consumption in the light phase indicates adaptive thermogenesis in the knockout mice. The body temperature of the receptor knockout mice was significantly higher than the control in the light phase, and this was mainly caused by a large difference occurring between 0600 and 0900 h. In addition to the metabolic chamber studies and circadian rhythm analyses, qPCR of hypothalamic homogenates indicated higher mRNA expression of orexin and transient receptor potential vanilloid 4 cation channels. Consistent with a direct role of IL-15Ralpha in the hypothalamus, IL-15 treatment of the wild-type mice induced c-Fos expression in the preoptic area. We conclude that activation of hypothalamic neurons by IL-15 in mice contributes to thermoregulation and modifies the metabolic phenotype.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3939616PMC
http://dx.doi.org/10.1007/s12031-009-9319-zDOI Listing

Publication Analysis

Top Keywords

knockout mice
16
light phase
12
metabolic activity
8
body temperature
8
metabolic phenotype
8
mice higher
8
oxygen consumption
8
circadian rhythm
8
mice
7
il-15
5

Similar Publications

Mitigation of depleted uranium-induced mitochondrial damage by ethylmalonic encephalopathy 1 protein via modulation of hydrogen sulfide and glutathione pathways.

Arch Toxicol

December 2024

State Key Laboratory of Trauma and Chemical Poisoning, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Army Medical University, Chongqing, 400038, China.

Depleted uranium (DU) is a byproduct of uranium enrichment, which can cause heavy-metal toxicity and radiation toxicity as well as serious damage to the kidneys. However, the mechanism of renal injury induced by DU is still unclear. This study aimed to explore the role of ethylmalonic encephalopathy 1 (ETHE1) in DU-induced mitochondrial dysfunction and elucidate the underlying mechanisms.

View Article and Find Full Text PDF

Hemolytic-uremic syndrome (HUS) is a systemic complication of an infection with Shiga toxin (Stx)-producing enterohemorrhagic , primarily leading to acute kidney injury (AKI) and microangiopathic hemolytic anemia. Although free heme has been found to aggravate renal damage in hemolytic diseases, the relevance of the heme-degrading enzyme heme oxygenase-1 (HO-1, encoded by ) in HUS has not yet been investigated. We hypothesized that HO-1 also important in acute phase responses in damage and inflammation, contributes to renal pathogenesis in HUS.

View Article and Find Full Text PDF

Mettl3-Mediated m6A Modification is Essential for Visual Function and Retinal Photoreceptor Survival.

Invest Ophthalmol Vis Sci

December 2024

The Sichuan Provincial Key Laboratory for Human Disease Gene Study and Center for Medical Genetics, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China.

Purpose: N6-methyladenosine (m6A) modification, one of the most common epigenetic modifications in eukaryotic mRNA, has been shown to play a role in the development and function of the mammalian nervous system by regulating the biological fate of mRNA. METTL3, the catalytically active component of the m6A methyltransferase complex, has been shown to be essential in development of in the retina. However, its role in the mature retina remains elusive.

View Article and Find Full Text PDF

ALDH1L1 plays a crucial role in folate metabolism, regulating the flow of one-carbon groups through the conversion of 10-formyltetrahydrofolate to tetrahydrofolate and CO in a NADP-dependent reaction. The downregulation of ALDH1L1 promotes malignant tumor growth, and silencing of ALDH1L1 is commonly observed in many cancers. In a previous study, knockout (KO) mice were found to have an altered liver metabotype, including significant alterations in glycine and serine.

View Article and Find Full Text PDF

Enteric pathogen rotavirus (RV) primarily infects mature enterocytes at the tips of the intestinal villi; however, the role of secretory Paneth and goblet cells in RV pathogenesis remains unappreciated. Atoh1 knockout mice (Atoh1cKO) were used to conditionally delete Paneth, goblet, and enteroendocrine cells in the epithelium to investigate the role of secretory cells in RV infection. Unexpectedly, the number of infected enterocytes and the amount of RV shedding in the stool were greatly decreased following secretory cell deletion.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!