Developmental phase change and flowering transition are emerging as potential targets for biomass agriculture in recent years. The GIGANTEA (GI) gene is one of the central regulators that direct flowering promotion and phase transition. In this work, we isolated a GI gene orthologue from the small annual grass Brachypodium distachyon inbred line Bd21 (Brachypodium), which is perceived as a potential model monocot for studies on bioenergy grass species. A partial GI gene sequence was identified from a Brachypodium expressed sequence tag library, and a full-size gene (BdGI) was amplified from a Brachypodium cDNA library using specific primer sets designed through analysis of monocot GI gene sequences. The BdGI gene was up-regulated by light and cold. A circadian rhythm set by light-dark transition also regulated the expression of the BdGI gene. The deduced amino acid sequence of the BdGI protein shares higher than 70% of sequence identity with the GI proteins in monocots and Arabidopsis. In addition, the BdGI protein is constitutively targeted to the nucleus and physically interacts with the ZEITLUPE (ZTL) and CONSTITUTIVE PHOTOMORPHOGENIC 1 (COP1) proteins, like the Arabidopsis GI protein. Interestingly, heterologous expression of the BdGI gene in a GI-deficient Arabidopsis mutant rescued efficiently the late flowering phenotype. Together, our data indicate that the role of the GI gene in flowering induction is conserved in Arabidopsis and Brachypodium. It is envisioned that the GI genes of bioenergy grasses as well as Brachypodium could be manipulated to improve biomass by engineering developmental timing of phase transitions.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11103-009-9586-7DOI Listing

Publication Analysis

Top Keywords

bdgi gene
12
gene
10
brachypodium distachyon
8
gigantea gene
8
expression bdgi
8
bdgi protein
8
brachypodium
7
bdgi
6
identification molecular
4
molecular characterization
4

Similar Publications

Bone marrow stromal cell-derived growth inhibitor serves as a stress sensor to induce autophagy.

FEBS Lett

April 2020

Department of Toxicology of School of Public Health, and Department of Gynecologic Oncology of Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China.

Autophagy is an evolutionarily conserved stress response that promotes the lysosomal degradation of intracellular components. The bone marrow stromal cell-derived growth inhibitor (BDGI) functions as a stress sensor which is upregulated by oxidative stress and DNA damage. However, the role of BDGI in autophagic response to certain stresses remains unknown.

View Article and Find Full Text PDF

Gold complex (diethyldithiocarbamato-gold(I)) (diphenylphosphino) methane (BDG-I) is cytotoxic toward different cancer cell lines. We compared the cytotoxic effect of BDG-I with that of cisplatin in the A549 lung cancer cell line. Additionally, we investigated the molecular mechanism underlying the toxic effect of BDG-I toward the A549 cell line and the identification of cancer-related miRNAs likely to be involved in killing the lung cancer cells.

View Article and Find Full Text PDF

Developmental phase change and flowering transition are emerging as potential targets for biomass agriculture in recent years. The GIGANTEA (GI) gene is one of the central regulators that direct flowering promotion and phase transition. In this work, we isolated a GI gene orthologue from the small annual grass Brachypodium distachyon inbred line Bd21 (Brachypodium), which is perceived as a potential model monocot for studies on bioenergy grass species.

View Article and Find Full Text PDF

Oxidized 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphorylcholine (OxPAPC) is present in oxidative modified LDL and accumulates in lesions of many chronic inflammatory diseases, such as atherosclerosis. In a microarray study, OxPAPC has been demonstrated to modulate the expression of >700 genes in human aortic endothelial cells. We found that the levels of mRNA for OKL38 [also named Bone marrow Derived Growth Factor (BDGI)], a tumor growth inhibitor, were strongly increased by OxPAPC.

View Article and Find Full Text PDF

Genes encoding growth-inhibitory proteins are postulated to be candidate tumor suppressors. The identification of such proteins may benefit the early diagnosis and therapy of tumors. Here we report the cloning and functional characterization of a novel human bone marrow stromal cell (BMSC)-derived growth inhibitor (BDGI) by large scale random sequencing of a human BMSC cDNA library.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!