OBJECTIVE: The increasing concentration of proteoglycans from the surface to the deep zone of articular cartilage produces a depth-dependent gradient in fixed charge density, and therefore extracellular osmolarity, which may vary with loading conditions, growth and development, or disease. In this study we examine the relationship between in situ variations in osmolarity on chondrocyte water transport properties. Chondrocytes from the depth-dependent zones of cartilage, effectively preconditioned in varying osmolarities, were used to probe this relationship. DESIGN: First, depth variation in osmolarity of juvenile bovine cartilage under resting and loaded conditions was characterized using a combined experimental/theoretical approach. Zonal chondrocytes were isolated into two representative "baseline" osmolarities chosen from this analysis to reflect in situ conditions. Osmotic challenge was then used as a tool for determination of water transport properties at each of these baselines. Cell calcium signaling was monitored simultaneously as a preliminary examination of osmotic baseline effects on cell signaling pathways. RESULTS: Osmotic baseline exhibits a significant effect on the cell membrane hydraulic permeability of certain zonal subpopulations but not on cell water content or incidence of calcium signaling. CONCLUSIONS: Chondrocyte properties can be sensitive to changes in baseline osmolarity, such as those occurring during OA progression (decrease) and de novo tissue synthesis (increase). Care should be taken in comparing chondrocyte properties across zones when cells are tested in vitro in non-physiologic culture media.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2792913 | PMC |
http://dx.doi.org/10.1007/s12195-008-0026-6 | DOI Listing |
J Chem Eng Data
January 2025
Department of Chemical and Geological Sciences, University of Cagliari, 09042 Monserrato, Italy.
Deep eutectic solvents (DESs) have recently gained attention due to their tailorable properties and versatile applications in several fields, including green chemistry, pharmaceuticals, and energy storage. Their tunable properties can be enhanced by mixing DESs with cosolvents such as ethanol, acetonitrile, and water. DESs are structurally complex, and molecular modeling techniques, including quantum mechanical calculations and molecular dynamics simulations, play a crucial role in understanding their intricate behavior when mixed with cosolvents.
View Article and Find Full Text PDFACS Appl Energy Mater
January 2025
Department of Chemical Engineering, Delft University of Technology, Van der Maasweg 9, 2629HZ Delft, The Netherlands.
The decoupled power and energy output of a redox flow battery (RFB) offers a key advantage in long-duration energy storage, crucial for a successful energy transition. Iodide/iodine and hydrogen/water, owing to their fast reaction kinetics, benign nature, and high solubility, provide promising battery chemistry. However, H-I RFBs suffer from low open circuit potentials, iodine crossover, and their multiphase nature.
View Article and Find Full Text PDFWater Environ Res
January 2025
Arizona State University, Tempe, Arizona, USA.
Continuously flowing wastewater-treatment processes can be configured for biological and physical selection to form and retain large biological aggregates (LBAs), along with suspended biomass that contains ordinary biological flocs and biomass that has detached from the LBAs. Suspended biomass and LBAs have different solids residence times (SRTs) and mass-transport resistances. Here, mathematical sub-models that describe metabolic processes, a 1-D biofilm, and spherical carriers that can migrate throughout a wastewater-treatment process were combined to simulate a full-scale demonstration train having anaerobic, anoxic, and oxic zones, as well as side-stream enhanced biological phosphorus removal.
View Article and Find Full Text PDFPlant Cell Environ
January 2025
Department of Geosciences and Natural Resource Management, University of Copenhagen, Frederiksberg, Denmark.
Common ash (Fraxinus excelsior) is under intensive attack from the invasive alien pathogenic fungus Hymenoscyphus fraxineus, causing ash dieback at epidemic levels throughout Europe. Previous studies have found significant genetic variation among genotypes in ash dieback susceptibility and that host phenology, such as autumn yellowing, is correlated with susceptibility of ash trees to H. fraxineus; however, the genomic basis of ash dieback tolerance in F.
View Article and Find Full Text PDFMol Ecol
January 2025
Marine and Environmental Biology, University of Southern California, Los Angeles, California, USA.
Anthropogenic carbon dioxide emissions have been increasing rapidly in recent years, driving pH and oxygen levels to record low concentrations in the oceans. Eastern boundary upwelling systems such as the California Current System (CCS) experience exacerbated ocean acidification and hypoxia (OAH) due to the physical and chemical properties of the transported deeper waters. Research efforts have significantly increased in recent years to investigate the deleterious effects of climate change on marine species, but have not focused on the impacts of simultaneous OAH stressor exposure.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!