Pattern generators found in the spinal cord are no more seen as simple rhythmic oscillators for motion control. Indeed, they achieve flexible and dynamical coordination in interaction with the body and the environment dynamics giving to rise motor synergies. Discovering the mechanisms underlying the control of motor synergies constitutes an important research question not only for neuroscience but also for robotics: the motors coordination of high dimensional robotic systems is still a drawback and new control methods based on biological solutions may reduce their overall complexity. We propose to model the flexible combination of motor synergies in embodied systems via partial phase synchronization of distributed chaotic systems; for specific coupling strength, chaotic systems are able to phase synchronize their dynamics to the resonant frequencies of one external force. We take advantage of this property to explore and exploit the intrinsic dynamics of one specified embodied system. In two experiments with bipedal walkers, we show how motor synergies emerge when the controllers phase synchronize to the body's dynamics, entraining it to its intrinsic behavioral patterns. This stage is characterized by directed information flow from the sensors to the motors exhibiting the optimal situation when the body dynamics drive the controllers (mutual entrainment). Based on our results, we discuss the relevance of our findings for modeling the modular control of distributed pattern generators exhibited in the spinal cord, and for exploring the motor synergies in robots.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2790947 | PMC |
http://dx.doi.org/10.3389/neuro.12.002.2009 | DOI Listing |
Wearable Technol
November 2024
Embedded Systems and Robotics Lab, Tezpur University, Tezpur, Assam, India.
Electromyogram (EMG) has been a fundamental approach for prosthetic hand control. However it is limited by the functionality of residual muscles and muscle fatigue. Currently, exploring temporal shifts in brain networks and accurately classifying noninvasive electroencephalogram (EEG) for prosthetic hand control remains challenging.
View Article and Find Full Text PDFWearable Technol
November 2024
BruBotics, Vrije Universiteit Brussel, Brussels, 1050, Belgium.
Advancements in wearable robots aim to improve user motion, motor control, and overall experience by minimizing energetic cost (EC). However, EC is challenging to measure and it is typically indirectly estimated through respiratory gas analysis. This study introduces a novel EMG-based objective function that captures individuals' natural energetic expenditure during walking.
View Article and Find Full Text PDFScience
January 2025
Department of Medicine and Surgery, University of Parma, Parma, Italy.
The current understanding of primate natural action organization derives from laboratory experiments in restrained contexts (RCs) under the assumption that this knowledge generalizes to freely moving contexts (FMCs). In this work, we developed a neurobehavioral platform to enable wireless recording of the same premotor neurons in both RCs and FMCs. Neurons often encoded the same hand and mouth actions differently in RCs and FMCs.
View Article and Find Full Text PDFExp Brain Res
January 2025
Department of Exercise Sciences, University of Auckland, Auckland, New Zealand.
This study explores the role of task constraints over muscle synergies expression in the context of upper limb motor impairment after stroke. We recruited nine chronic stroke survivors with upper limb impairments and fifteen healthy controls, who performed a series of tasks designed to evoke muscle synergies through various spatial explorations. These tasks included an isometric force task, a dynamic reaching task, the clinical Fugl-Meyer (FM) assessment, and a pinch task.
View Article and Find Full Text PDFSci Rep
January 2025
Neuro-Robotics Lab, Department of Robotics, Graduate School of Engineering, Tohoku University, Sendai, Japan.
Humans exploit motor synergies for motor control; however, how they emerge during motor learning is not clearly understood. Few studies have dealt with the computational mechanism for generating synergies. Previously, optimal control generated synergistic motion for the upper limb; however, it has not yet been applied to the high-dimensional whole-body system.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!