Activated oncogenes induce compensatory tumour-suppressive responses, such as cellular senescence or apoptosis, but the signals determining the main outcome remain to be fully understood. Here, we uncover a role for Cdk2 (cyclin-dependent kinase 2) in suppressing Myc-induced senescence. Short-term activation of Myc promoted cell-cycle progression in either wild-type or Cdk2 knockout mouse embryo fibroblasts (MEFs). In the knockout MEFs, however, the initial hyper-proliferative response was followed by cellular senescence. Loss of Cdk2 also caused sensitization to Myc-induced senescence in pancreatic beta-cells or splenic B-cells in vivo, correlating with delayed lymphoma onset in the latter. Cdk2-/- MEFs also senesced upon ectopic Wnt signalling or, without an oncogene, upon oxygen-induced culture shock. Myc also causes senescence in cells lacking the DNA repair protein Wrn. However, unlike loss of Wrn, loss of Cdk2 did not enhance Myc-induced replication stress, implying that these proteins suppress senescence through different routes. In MEFs, Myc-induced senescence was genetically dependent on the ARF-p53-p21Cip1 and p16INK4a-pRb pathways, p21Cip1 and p16INK4a being selectively induced in Cdk2-/- cells. Thus, although redundant for cell-cycle progression and development, Cdk2 has a unique role in suppressing oncogene- and/or stress-induced senescence. Pharmacological inhibition of Cdk2 induced Myc-dependent senescence in various cell types, including a p53-null human cancer cell line. Our data warrant re-assessment of Cdk2 as a therapeutic target in Myc- or Wnt-driven tumours.

Download full-text PDF

Source
http://dx.doi.org/10.1038/ncb2004DOI Listing

Publication Analysis

Top Keywords

cellular senescence
12
myc-induced senescence
12
senescence
10
cdk2
8
cell-cycle progression
8
loss cdk2
8
wrn loss
8
cdk2 suppresses
4
suppresses cellular
4
senescence induced
4

Similar Publications

In cells, the term "cellular aging" represents a collection of biological changes that can precede the proliferative senescence states. Cells more resistant to proliferative senescence, such as the ones found in the basal layer of the epidermis, may also exhibit these aging patterns. Therefore, cellular aging events could be induced by endogenous signals named here as cellular aging triggers (CATs) components.

View Article and Find Full Text PDF

Chronic kidney disease and aging: dissecting the p53/p21 pathway as a therapeutic target.

Biogerontology

December 2024

Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India.

Chronic kidney diseases (CKD) are a group of multi-factorial disorders that markedly impair kidney functions with progressive renal deterioration. Aging contributes to age-specific phenotypes in kidneys, which undergo several structural and functional alterations, such as a decline in regenerative capacity and increased fibrosis, inflammation, and tubular atrophy, all predisposing them to disease and increasing their susceptibility to injury while impeding their recovery. A central feature of these age-related processes is the activation of the p53/p21 pathway signaling.

View Article and Find Full Text PDF

Arachidonoylethanolamide promotes cellular senescence in a human glioblastoma cell line.

Biochem Biophys Res Commun

December 2024

Laboratorio de Neuroquímica, Facultad de Medicina, Universidad Autónoma Del Estado de México, Paseo Tollocan esq, Jesús Carranza s/n, Col. Moderna de la Cruz, Toluca, Mexico, CP 50180. Electronic address:

Glioblastomas are the most common and deadly primary brain tumors, with high mortality rates despite aggressive therapies. Cellular senescence is important for cancer development, as it limits tumor progression; however, it may also stimulate inflammation at the tumor microenvironment, promoting tumor development. Hence, modulation of senescence is an important target for cancer therapy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!