The transcriptional co-factor Friend of GATA1 (FOG-1) has been shown to interact with subunits of the nucleosome remodelling and histone deacetylase (NuRD) complex through a specific motif located at its N-terminus. To test the importance of FOG-1/NuRD interaction for haematopoiesis in vivo, we generated mice with a mutation that specifically disrupts FOG-1/NuRD interaction (FOG-1(R3K5A)). Homozygous FOG-1(R3K5A) mice were found to have splenomegaly, extramedullary erythropoiesis, granulocytosis and thrombocytopaenia secondary to a block in megakaryocyte maturation. FOG-1(R3K5A/R3K5A) megakaryocytes and erythroid progenitors expressed increased levels of GATA2, showing that FOG-1/NuRD interaction is required for the earlier described 'GATA Switch'. In addition, ablation of FOG-1/NuRD interaction led to inappropriate expression of mast cell and eosinophil-specific genes in the megakaryocyte and erythroid lineages. Chromatin immunoprecipitation experiments revealed that the NuRD complex was not properly recruited to a mast cell gene promoter in FOG-1(R3K5A/R3K5A) megakaryocytes, suggesting that FOG-1/NuRD interaction is required for the direct suppression of mast cell gene expression. Taken together, these results underscore the importance of the FOG-1/NuRD interaction for the re-enforcement of lineage commitment during erythropoiesis and megakaryopoiesis in vivo.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2824465 | PMC |
http://dx.doi.org/10.1038/emboj.2009.368 | DOI Listing |
Nucleic Acids Res
September 2021
Department of Cellular and Molecular Physiology, Hershey, PA 17033, USA.
The activity of hematopoietic factor GATA-1 is modulated through p300/CBP-mediated acetylation and FOG-1 mediated indirect interaction with HDAC1/2 containing NuRD complex. Although GATA-1 acetylation is implicated in GATA-1 activation, the role of deacetylation is not studied. Here, we found that the FOG-1/NuRD does not deacetylate GATA-1.
View Article and Find Full Text PDFMol Cell Biol
July 2010
Division of Hematology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, USA.
The human beta-globin genes are expressed in a developmentally controlled fashion. Studies on the molecular mechanisms underlying the stage-specific regulation of globin genes have been fueled by the clinical benefit of elevated fetal gamma-globin expression in patients with sickle cell anemia and thalassemia. Recent reports suggested a role of the hematopoietic transcription factor GATA-1, its cofactor FOG-1, and the associated chromatin remodeling complex NuRD in the developmental silencing of HBG1 and HBG2 gene expression.
View Article and Find Full Text PDFEMBO J
January 2010
Department of Medicine, The University of Chicago, Chicago, IL, USA.
The transcriptional co-factor Friend of GATA1 (FOG-1) has been shown to interact with subunits of the nucleosome remodelling and histone deacetylase (NuRD) complex through a specific motif located at its N-terminus. To test the importance of FOG-1/NuRD interaction for haematopoiesis in vivo, we generated mice with a mutation that specifically disrupts FOG-1/NuRD interaction (FOG-1(R3K5A)). Homozygous FOG-1(R3K5A) mice were found to have splenomegaly, extramedullary erythropoiesis, granulocytosis and thrombocytopaenia secondary to a block in megakaryocyte maturation.
View Article and Find Full Text PDFEMBO J
January 2010
Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA.
GATA transcription factors interact with FOG proteins to regulate tissue development by activating and repressing transcription. FOG-1 (ZFPM1), a co-factor for the haematopoietic factor GATA-1, binds to the NuRD co-repressor complex through a conserved N-terminal motif. Surprisingly, we detected NuRD components at both repressed and active GATA-1/FOG-1 target genes in vivo.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!