All hard, convex shapes are conjectured by Ulam to pack more densely than spheres, which have a maximum packing fraction of phi = pi/ radical18 approximately 0.7405. Simple lattice packings of many shapes easily surpass this packing fraction. For regular tetrahedra, this conjecture was shown to be true only very recently; an ordered arrangement was obtained via geometric construction with phi = 0.7786 (ref. 4), which was subsequently compressed numerically to phi = 0.7820 (ref. 5), while compressing with different initial conditions led to phi = 0.8230 (ref. 6). Here we show that tetrahedra pack even more densely, and in a completely unexpected way. Following a conceptually different approach, using thermodynamic computer simulations that allow the system to evolve naturally towards high-density states, we observe that a fluid of hard tetrahedra undergoes a first-order phase transition to a dodecagonal quasicrystal, which can be compressed to a packing fraction of phi = 0.8324. By compressing a crystalline approximant of the quasicrystal, the highest packing fraction we obtain is phi = 0.8503. If quasicrystal formation is suppressed, the system remains disordered, jams and compresses to phi = 0.7858. Jamming and crystallization are both preceded by an entropy-driven transition from a simple fluid of independent tetrahedra to a complex fluid characterized by tetrahedra arranged in densely packed local motifs of pentagonal dipyramids that form a percolating network at the transition. The quasicrystal that we report represents the first example of a quasicrystal formed from hard or non-spherical particles. Our results demonstrate that particle shape and entropy can produce highly complex, ordered structures.

Download full-text PDF

Source
http://dx.doi.org/10.1038/nature08641DOI Listing

Publication Analysis

Top Keywords

packing fraction
16
fraction phi
12
densely packed
8
pack densely
8
phi
7
tetrahedra
6
quasicrystal
5
disordered quasicrystalline
4
quasicrystalline crystalline
4
crystalline phases
4

Similar Publications

The Pulse Index Contour Continuous Cardiac Output (PICCO) module provides advanced and continuous monitoring of cardiac output through the use of arterial pulse contour analysis and transpulmonary thermodilution. The objective of this study was to compare the early postoperative outcomes of patients who were monitored using the conventional method and the pulse contour analysis method. A prospective observational study was conducted involving 45 patients who underwent cardiac surgery between 2020 and 2022.

View Article and Find Full Text PDF

Microgel suspensions have garnered significant interest in fundamental research due to their phase transition between liquid-like to paste-like behaviors stemming from tunable interparticle and particle-solvent interactions. Particularly, stimuli-responsive microgels undergo faster volume changes in response to external stimuli in comparison to their bulk counterparts, while maintaining their structural integrity. Here, concentrated and diluted suspensions of poly(-isopropylacrylamide) (PNIPAm) microgels are dispersed to different packing fractions in water for the characterizations of temperature-responsive rheological responses.

View Article and Find Full Text PDF

Dipolar gels formed by aggregation of magnetized beads.

Phys Rev E

November 2024

GRASP, Institute of Physics B5a, University of Liège, B4000 Liège, Belgium.

The out-of-equilibrium aggregation of dipolar particles, such as magnetized beads, leads to the formation of large structures composed of chains, loops, and eventually ribbons. In the present study, we focus on the evolution of these different substructures in a two-dimensional system confined within progressively shrinking environments. Using numerical simulations, we identify structural events as a function of the packing fraction.

View Article and Find Full Text PDF

Cell theories for the chiral crystal phase of hard equilateral triangles.

Phys Rev E

November 2024

Departamento de Física Teórica de la Materia Condensada, Instituto de Física de la Materia Condensada (IFIMAC) and Instituto de Ciencia de Materiales Nicolás Cabrera, Universidad Autónoma de Madrid, E-28049 Madrid, Spain.

We derive several versions of the cell theory for a crystal phase of hard equilateral triangles. To that purpose we analytically calculated the free area of a frozen oriented or freely rotating particle inside the cavity formed by its neighbors in a chiral configuration of their orientations. From the most successful versions of the theory we predict an equation of state which, despite being derived from a crystal configuration of particles, describes very reasonably the equation of state of the 6-atic liquid-crystal phase at packing fractions not very close from the isotropic-6-atic bifurcation.

View Article and Find Full Text PDF

To achieve specific adsorption-based sample preparation for the poorly soluble veterinary drug oxibendazole, this study employed 4-vinylpyridine as the functional monomer and conducted radical polymerization on the surface of functionalized silica nanoparticles to synthesize a surface molecularly imprinted polymer (OBZMIP). This OBZMIP exhibited good adsorption capacity for oxibendazole within 30 min, with its adsorption behavior conforming to the pseudo-second-order kinetic and Langmuir models, predicting a maximum adsorption capacity of 4.93 mg/g.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!